期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Kernel matrix learning with a general regularized risk functional criterion 被引量:3
1
作者 Chengqun Wang Jiming Chen +1 位作者 Chonghai Hu Youxian Sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期72-80,共9页
Kernel-based methods work by embedding the data into a feature space and then searching linear hypothesis among the embedding data points. The performance is mostly affected by which kernel is used. A promising way is... Kernel-based methods work by embedding the data into a feature space and then searching linear hypothesis among the embedding data points. The performance is mostly affected by which kernel is used. A promising way is to learn the kernel from the data automatically. A general regularized risk functional (RRF) criterion for kernel matrix learning is proposed. Compared with the RRF criterion, general RRF criterion takes into account the geometric distributions of the embedding data points. It is proven that the distance between different geometric distdbutions can be estimated by their centroid distance in the reproducing kernel Hilbert space. Using this criterion for kernel matrix learning leads to a convex quadratically constrained quadratic programming (QCQP) problem. For several commonly used loss functions, their mathematical formulations are given. Experiment results on a collection of benchmark data sets demonstrate the effectiveness of the proposed method. 展开更多
关键词 kernel method support vector machine kernel matrix learning HKRS geometric distribution regularized risk functional criterion.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部