The authors derive laws of the iterated logarithm for kernel estimator of regression function based on directional data. The results are distribution free in the sense that they are true for all distributions of desig...The authors derive laws of the iterated logarithm for kernel estimator of regression function based on directional data. The results are distribution free in the sense that they are true for all distributions of design variable.展开更多
The application of high-performance imaging sensors in space-based space surveillance systems makes it possible to recognize space objects and estimate their poses using vision-based methods. In this paper, we propose...The application of high-performance imaging sensors in space-based space surveillance systems makes it possible to recognize space objects and estimate their poses using vision-based methods. In this paper, we proposed a kernel regression-based method for joint multi-view space object recognition and pose estimation. We built a new simulated satellite image dataset named BUAA-SID 1.5 to test our method using different image representations. We evaluated our method for recognition-only tasks, pose estimation-only tasks, and joint recognition and pose estimation tasks. Experimental results show that our method outperforms the state-of-the-arts in space object recognition, and can recognize space objects and estimate their poses effectively and robustly against noise and lighting conditions.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 19631040 19971085), the Doctoral Program Foundatio
文摘The authors derive laws of the iterated logarithm for kernel estimator of regression function based on directional data. The results are distribution free in the sense that they are true for all distributions of design variable.
基金co-supported by the National Natural Science Foundation of China (Grant Nos. 61371134, 61071137)the National Basic Research Program of China (No. 2010CB327900)
文摘The application of high-performance imaging sensors in space-based space surveillance systems makes it possible to recognize space objects and estimate their poses using vision-based methods. In this paper, we proposed a kernel regression-based method for joint multi-view space object recognition and pose estimation. We built a new simulated satellite image dataset named BUAA-SID 1.5 to test our method using different image representations. We evaluated our method for recognition-only tasks, pose estimation-only tasks, and joint recognition and pose estimation tasks. Experimental results show that our method outperforms the state-of-the-arts in space object recognition, and can recognize space objects and estimate their poses effectively and robustly against noise and lighting conditions.