期刊文献+
共找到84篇文章
< 1 2 5 >
每页显示 20 50 100
Modified possibilistic clustering model based on kernel methods
1
作者 武小红 周建江 《Journal of Shanghai University(English Edition)》 CAS 2008年第2期136-140,共5页
A novel model of fuzzy clustering using kernel methods is proposed. This model is called kernel modified possibilistic c-means (KMPCM) model. The proposed model is an extension of the modified possibilistic c-means ... A novel model of fuzzy clustering using kernel methods is proposed. This model is called kernel modified possibilistic c-means (KMPCM) model. The proposed model is an extension of the modified possibilistic c-means (MPCM) algorithm by using kernel methods. Different from MPCM and fuzzy c-means (FCM) model which are based on Euclidean distance, the proposed model is based on kernel-induced distance. Furthermore, with kernel methods the input data can be mapped implicitly into a high-dimensional feature space where the nonlinear pattern now appears linear. It is unnecessary to do calculation in the high-dimensional feature space because the kernel function can do it. Numerical experiments show that KMPCM outperforms FCM and MPCM. 展开更多
关键词 fuzzy clustering kernel methods possibilistic c-means (PCM) kernel modified possibilistic c-means (KMPCM).
下载PDF
ALLIED FUZZY c-MEANS CLUSTERING MODEL 被引量:2
2
作者 武小红 周建江 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第3期208-213,共6页
A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive... A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive to initializations and often generates coincident clusters. AFCM overcomes this shortcoming and it is an ex tension of PCM. Membership and typicality values can be simultaneously produced in AFCM. Experimental re- suits show that noise data can be well processed, coincident clusters are avoided and clustering accuracy is better. 展开更多
关键词 fuzzy c-means clustering possibilistic c means clustering allied fuzzy c-means clustering
下载PDF
Knowledge-Driven Possibilistic Clustering with Automatic Cluster Elimination
3
作者 Xianghui Hu Yiming Tang +2 位作者 Witold Pedrycz Jiuchuan Jiang Yichuan Jiang 《Computers, Materials & Continua》 SCIE EI 2024年第9期4917-4945,共29页
Traditional Fuzzy C-Means(FCM)and Possibilistic C-Means(PCM)clustering algorithms are data-driven,and their objective function minimization process is based on the available numeric data.Recently,knowledge hints have ... Traditional Fuzzy C-Means(FCM)and Possibilistic C-Means(PCM)clustering algorithms are data-driven,and their objective function minimization process is based on the available numeric data.Recently,knowledge hints have been introduced to formknowledge-driven clustering algorithms,which reveal a data structure that considers not only the relationships between data but also the compatibility with knowledge hints.However,these algorithms cannot produce the optimal number of clusters by the clustering algorithm itself;they require the assistance of evaluation indices.Moreover,knowledge hints are usually used as part of the data structure(directly replacing some clustering centers),which severely limits the flexibility of the algorithm and can lead to knowledgemisguidance.To solve this problem,this study designs a newknowledge-driven clustering algorithmcalled the PCM clusteringwith High-density Points(HP-PCM),in which domain knowledge is represented in the form of so-called high-density points.First,a newdatadensitycalculation function is proposed.The Density Knowledge Points Extraction(DKPE)method is established to filter out high-density points from the dataset to form knowledge hints.Then,these hints are incorporated into the PCM objective function so that the clustering algorithm is guided by high-density points to discover the natural data structure.Finally,the initial number of clusters is set to be greater than the true one based on the number of knowledge hints.Then,the HP-PCM algorithm automatically determines the final number of clusters during the clustering process by considering the cluster elimination mechanism.Through experimental studies,including some comparative analyses,the results highlight the effectiveness of the proposed algorithm,such as the increased success rate in clustering,the ability to determine the optimal cluster number,and the faster convergence speed. 展开更多
关键词 Fuzzy C-Means(FCM) possibilistic clustering optimal number of clusters knowledge-driven machine learning fuzzy logic
下载PDF
Improved Kernel Possibilistic Fuzzy Clustering Algorithm Based on Invasive Weed Optimization 被引量:1
4
作者 赵小强 周金虎 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第2期164-170,共7页
Fuzzy c-means(FCM) clustering algorithm is sensitive to noise points and outlier data, and the possibilistic fuzzy c-means(PFCM) clustering algorithm overcomes the problem well, but PFCM clustering algorithm has some ... Fuzzy c-means(FCM) clustering algorithm is sensitive to noise points and outlier data, and the possibilistic fuzzy c-means(PFCM) clustering algorithm overcomes the problem well, but PFCM clustering algorithm has some problems: it is still sensitive to initial clustering centers and the clustering results are not good when the tested datasets with noise are very unequal. An improved kernel possibilistic fuzzy c-means algorithm based on invasive weed optimization(IWO-KPFCM) is proposed in this paper. This algorithm first uses invasive weed optimization(IWO) algorithm to seek the optimal solution as the initial clustering centers, and introduces kernel method to make the input data from the sample space map into the high-dimensional feature space. Then, the sample variance is introduced in the objection function to measure the compact degree of data. Finally, the improved algorithm is used to cluster data. The simulation results of the University of California-Irvine(UCI) data sets and artificial data sets show that the proposed algorithm has stronger ability to resist noise, higher cluster accuracy and faster convergence speed than the PFCM algorithm. 展开更多
关键词 data mining clustering algorithm possibilistic fuzzy c-means(PFCM) kernel possibilistic fuzzy c-means algorithm based on invasiv
原文传递
可能性聚类假设的多模适应学习方法 被引量:1
5
作者 但雨芳 陶剑文 +2 位作者 赵悦 潘婕 赵宝奇 《计算机科学与探索》 CSCD 北大核心 2023年第6期1329-1342,共14页
基于图的半监督学习(GSSL)凭借其直观性和良好的学习性能,在机器学习领域吸引了越来越多的关注。然而,通过分析发现,现有基于图的半监督学习方法存在对噪声、异常数据的鲁棒性不够好以及较敏感的问题。此外,该方法具有较好性能的前提是... 基于图的半监督学习(GSSL)凭借其直观性和良好的学习性能,在机器学习领域吸引了越来越多的关注。然而,通过分析发现,现有基于图的半监督学习方法存在对噪声、异常数据的鲁棒性不够好以及较敏感的问题。此外,该方法具有较好性能的前提是训练数据与测试数据为独立同分布(IID),导致在实际应用中存在一定的局限性。为解决上述问题,在某个再生核Hilbert空间,在充分考虑最小化噪声、异常数据影响的基础上,结合不同数据分布特点,基于结构风险最小化模型,提出一种基于可能性聚类假设的多模型适应学习方法(MA-PCA)。其主要思想为:通过模糊熵减弱噪声、异常数据对方法所带来的负面影响;综合考虑训练数据与测试数据在独立同分布和在独立不同分布时进行有效的多模适应学习,弱化训练数据和测试数据的独立同分布约束条件亦具有较好性能;给出了算法实现及其收敛性定理。在多个真实视觉数据集上分别进行了大量实验并进行深入分析,证实了所提方法具有优越的或可比较的鲁棒性和泛化性能。 展开更多
关键词 基于图的半监督学习(GSSL) 多模适应 可能性聚类 模糊熵
下载PDF
基于带约束可能性聚类的多目标跟踪新算法
6
作者 刘全仲 李良群 《火力与指挥控制》 CSCD 北大核心 2023年第6期14-18,共5页
针对密集杂波环境下的多目标跟踪问题,提出了一种基于可能性聚类的联合概率数据关联滤波算法。在提出算法中,分析了传统FCM数据关联算法在噪声抑制方面的不足;利用可能性聚类能够有效抑制噪声的优势,同时结合多目标跟踪中,聚类中心应该... 针对密集杂波环境下的多目标跟踪问题,提出了一种基于可能性聚类的联合概率数据关联滤波算法。在提出算法中,分析了传统FCM数据关联算法在噪声抑制方面的不足;利用可能性聚类能够有效抑制噪声的优势,同时结合多目标跟踪中,聚类中心应该在目标预测位置或者在其附近的特点,提出了一种以目标预测位置为约束条件的可能性聚类新目标函数,通过对目标函数进行优化得到目标观测的数据关联矩阵,有效减少由杂波引起的错误关联,实现对多目标与观测的准确关联。实验结果表明,提出的方法能够有效解决多目标与观测的关联问题,关联准确率要高于传统的Fitzgerald’JPDAF、MEF-JPDAF算法和IF-JPDAF算法。 展开更多
关键词 多目标跟踪 数据关联 可能性聚类 信息融合
下载PDF
基于样本加权的可能性模糊聚类算法 被引量:21
7
作者 刘兵 夏士雄 +1 位作者 周勇 韩旭东 《电子学报》 EI CAS CSCD 北大核心 2012年第2期371-375,共5页
可能性模糊聚类算法解决了噪音敏感和一致性聚类问题,但算法假定每个待分析样本对聚类的贡献相同,导致离群点或噪声点对算法的干扰较强,算法迭代次数过大.为此,提出一种基于样本加权的可能性模糊聚类算法,新算法具有更快的收敛速度,对... 可能性模糊聚类算法解决了噪音敏感和一致性聚类问题,但算法假定每个待分析样本对聚类的贡献相同,导致离群点或噪声点对算法的干扰较强,算法迭代次数过大.为此,提出一种基于样本加权的可能性模糊聚类算法,新算法具有更快的收敛速度,对标准数据集和人工数据集加噪后的测试结果表明,该算法具有更强的鲁棒性,在有效降低时间复杂度的同时能够取得较好的聚类准确率. 展开更多
关键词 样本加权 可能性C-均值聚类 可能性模糊聚类
下载PDF
基于核可能性聚类算法和油中溶解气体分析的电力变压器故障诊断研究 被引量:57
8
作者 熊浩 孙才新 +2 位作者 廖瑞金 李剑 杜林 《中国电机工程学报》 EI CSCD 北大核心 2005年第20期162-166,共5页
变压器油中溶解气体分析(DissolvedGasAnalysis,DGA)是电力变压器绝缘诊断的重要方法。针对模糊C均值聚类算法用于溶解气体成分分析时存在的问题,文中将核函数和可能性聚类算法相结合,提出一种简化的核可能性聚类算法,并将其用于变压器... 变压器油中溶解气体分析(DissolvedGasAnalysis,DGA)是电力变压器绝缘诊断的重要方法。针对模糊C均值聚类算法用于溶解气体成分分析时存在的问题,文中将核函数和可能性聚类算法相结合,提出一种简化的核可能性聚类算法,并将其用于变压器DGA数据分析,从而实现变压器的故障诊断。经实践证明,该算法能快速、有效地对样本进行聚类,且特别适用于含有噪声样本的环境。 展开更多
关键词 电力变压器 溶解气体分析 核函数 可能性聚类 故障诊断
下载PDF
基于非欧式距离的可能性C-均值聚类 被引量:8
9
作者 武小红 周建江 +1 位作者 李海林 胡彩平 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2006年第6期702-705,共4页
改进型可能性C-均值聚类(Improved possib ilistic C-means,IPCM)是在综合了模糊C-均值聚类(Fuzzy C-means,FCM)和可能性C-均值聚类(Possib ilistic C-means,PCM)的基础上得到的。在IPCM的基础上,利用鲁棒统计观点和影响函数,引入一种... 改进型可能性C-均值聚类(Improved possib ilistic C-means,IPCM)是在综合了模糊C-均值聚类(Fuzzy C-means,FCM)和可能性C-均值聚类(Possib ilistic C-means,PCM)的基础上得到的。在IPCM的基础上,利用鲁棒统计观点和影响函数,引入一种新的距离度量以代替IPCM的目标函数中的欧式距离度量,提出了一种新的可能性C-均值聚类模型(A lternative improved possib ilistic C-means,A IPCM),并给出了该模型的具体实现算法。A IPCM具有良好的鲁棒性,更适合对含有噪声或野值的数据进行划分聚类。仿真实验表明,A IPCM能克服噪声敏感性问题,获得合适的聚类中心和高的聚类准确率。 展开更多
关键词 模糊聚类 改进型可能性C-均值聚类 新的改进型可能性C-均值聚类
下载PDF
可能性模糊C-均值聚类新算法 被引量:34
10
作者 武小红 周建江 《电子学报》 EI CAS CSCD 北大核心 2008年第10期1996-2000,共5页
模糊C-均值聚类(FCM)对噪声数据敏感和可能性C-均值聚类(PCM)对初始类中心非常敏感易导致一致性聚类.可能性模糊C-均值聚类(PFCM)综合了FCM和PCM算法并且克服了这些缺点.但是PFCM必须先运行FCM来计算参数.提出一种新的PCM算法,新的PCM... 模糊C-均值聚类(FCM)对噪声数据敏感和可能性C-均值聚类(PCM)对初始类中心非常敏感易导致一致性聚类.可能性模糊C-均值聚类(PFCM)综合了FCM和PCM算法并且克服了这些缺点.但是PFCM必须先运行FCM来计算参数.提出一种新的PCM算法,新的PCM算法利用协方差矩阵来计算参数衡量了数据集的紧凑程度且无须先运行FCM,在新的PCM和FCM基础上提出了新PFCM算法,该算法无须事先运行FCM以计算参数,减少了算法运算时间.对数据集的测试实验结果表明了提出的新算法能同时产生模糊隶属度和典型值,减少聚类时间,同时具有更好的分类准确率. 展开更多
关键词 模糊聚类 模糊C-均值聚类 可能性C-均值聚类 可能性模糊C-均值聚类
下载PDF
基于动态聚类的电力变压器故障诊断 被引量:21
11
作者 熊浩 张晓星 +2 位作者 廖瑞金 常涛 孙才新 《仪器仪表学报》 EI CAS CSCD 北大核心 2007年第3期456-459,共4页
本文提出了一种新电力变压器故障诊断的动态聚类方法,以人工免疫网络对故障样本进行免疫学习和记忆,提取表征故障样本的有用特征作为核可能性聚类算法的初始聚类中心,再用遗传算法动态选取聚类个数和中心实现故障样本的分类。该诊断方... 本文提出了一种新电力变压器故障诊断的动态聚类方法,以人工免疫网络对故障样本进行免疫学习和记忆,提取表征故障样本的有用特征作为核可能性聚类算法的初始聚类中心,再用遗传算法动态选取聚类个数和中心实现故障样本的分类。该诊断方法经大量实例分析,并将其结果与BP神经网络等方法的结果相比,表明该算法具有较高的诊断精度。 展开更多
关键词 动态聚类 人工免疫网络 核可能性聚类 遗传算法 电力变压器 故障诊断
下载PDF
基于空间信息的可能性模糊C均值聚类遥感图像分割 被引量:12
12
作者 张一行 王霞 +2 位作者 方世明 李晓冬 凌峰 《计算机应用》 CSCD 北大核心 2011年第11期3004-3007,共4页
可能性模糊C均值(PFCM)聚类算法作为模糊C均值(FCM)聚类算法的一种改进算法,能在一定程度上克服FCM算法对噪声的敏感性;但由于PFCM没有考虑像元间的空间信息,对含有较大噪声的图像分割效果依然不理想。为此,提出一种新的基于空间信息的P... 可能性模糊C均值(PFCM)聚类算法作为模糊C均值(FCM)聚类算法的一种改进算法,能在一定程度上克服FCM算法对噪声的敏感性;但由于PFCM没有考虑像元间的空间信息,对含有较大噪声的图像分割效果依然不理想。为此,提出一种新的基于空间信息的PFCM算法(SPFCM),克服了PFCM算法对含有较大噪声的图像分割效果不佳的缺点。通过对人工图像和IKONOS遥感图像进行分析,结果表明,SPFCM算法无论是在视觉上还是在分割正确率上都优于传统的FCM算法、PFCM算法及两种加入空间信息的FCM算法;对于含有高斯噪声和盐椒噪声的图像,平均分割正确率高达99.71%,是一种去噪效果较好的图像分割算法。 展开更多
关键词 空间信息 模糊C均值聚类 可能性C均值聚类 图像分割
下载PDF
一种基于核的快速可能性聚类算法 被引量:6
13
作者 韩旭东 夏士雄 +1 位作者 刘兵 周勇 《计算机工程与应用》 CSCD 北大核心 2011年第6期176-180,共5页
传统的快速聚类算法大多基于模糊C均值算法(Fuzzy C-means,FCM),而FCM对初始聚类中心敏感,对噪音数据敏感并且容易收敛到局部极小值,因而聚类准确率不高。可能性C-均值聚类较好地解决了FCM对噪声敏感的问题,但容易产生一致性聚类。将FC... 传统的快速聚类算法大多基于模糊C均值算法(Fuzzy C-means,FCM),而FCM对初始聚类中心敏感,对噪音数据敏感并且容易收敛到局部极小值,因而聚类准确率不高。可能性C-均值聚类较好地解决了FCM对噪声敏感的问题,但容易产生一致性聚类。将FCM和可能性C-均值聚类结合的聚类算法较好地解决了一致性聚类问题。为进一步提高算法收敛速度和鲁棒性,提出一种基于核的快速可能性聚类算法。该方法引入核聚类的思想,同时使用样本方差对目标函数中参数η进行优化。标准数据集和人造数据集的实验结果表明这种基于核的快速可能性聚类算法提高了算法的聚类准确率,加快了收敛速度。 展开更多
关键词 模糊C-均值聚类 可能性聚类 核聚类
下载PDF
可能性划分系数和模糊变差相结合的聚类有效性函数 被引量:11
14
作者 范九伦 吴成茂 《电子与信息学报》 EI CSCD 北大核心 2002年第8期1017-1021,共5页
基于可能性分布描述因子定义的可能性划分系数有随类数增加而单调递减的趋势,缺乏与数据集几何结构的直接联系。该文考虑到数据集的几何结构信息,对可能性划分系数进行改进,提出了新的聚类有效性标准。实验结果表明,该文提出的方法具有... 基于可能性分布描述因子定义的可能性划分系数有随类数增加而单调递减的趋势,缺乏与数据集几何结构的直接联系。该文考虑到数据集的几何结构信息,对可能性划分系数进行改进,提出了新的聚类有效性标准。实验结果表明,该文提出的方法具有良好的分类性能。 展开更多
关键词 模糊变差 函数 模糊C-均值聚类 聚类有效性 可能性划分系数 模式识别 模糊控制
下载PDF
特征空间属性加权混合C均值模糊核聚类算法 被引量:4
15
作者 贺杨成 王士同 江南 《计算机工程与应用》 CSCD 北大核心 2011年第23期159-163,共5页
可能性聚类算法(PCM)通过引入可能隶属关系来提高聚类中心免于噪声干扰的能力,但是其往往趋向找到相同的集群。为了克服PCM算法的缺陷,PFCM算法同时利用隶属度与可能性把数据点划分到不同的集群中。提高了算法的抗噪能力。但PFCM算法对... 可能性聚类算法(PCM)通过引入可能隶属关系来提高聚类中心免于噪声干扰的能力,但是其往往趋向找到相同的集群。为了克服PCM算法的缺陷,PFCM算法同时利用隶属度与可能性把数据点划分到不同的集群中。提高了算法的抗噪能力。但PFCM算法对发现大小不相等的集群并不十分理想。因此提出了一种特征空间属性加权混合C均值模糊核聚类算法WKFM,该方法充分考虑了属性间的不平衡性,通过利用优化选取核参数的核函数把在原始空间中非线性可分的集群转化为高维空间中同质集群。实验结果表明,该算法能更好地发现含有噪音数据集的聚类中心,获得数据集质量更好的划分。 展开更多
关键词 模糊聚类 模式识别 可能性聚类
下载PDF
一种基于粒子群优化的可能性C均值聚类改进方法 被引量:7
16
作者 陈东辉 刘志镜 王纵虎 《计算机科学》 CSCD 北大核心 2012年第11期122-126,共5页
提出了一种基于粒子群优化的可能性C均值(Possibilistic C-means,PCM)聚类改进方法。该方法首先通过改进PCM算法的目标函数来计算数据模式的隶属度矩阵和聚类中心完成粒子编码,从而降低算法对初始中心的敏感,提高聚类的精度;其次,通过... 提出了一种基于粒子群优化的可能性C均值(Possibilistic C-means,PCM)聚类改进方法。该方法首先通过改进PCM算法的目标函数来计算数据模式的隶属度矩阵和聚类中心完成粒子编码,从而降低算法对初始中心的敏感,提高聚类的精度;其次,通过粒子群优化(Particle Swarm Optimization,PSO)算法对编码进行优化,以有效地克服PCM聚类算法容易导致聚类一致性和陷入局部最优解的缺点,减少算法的迭代次数。通过人造数据集和UCI数据集上的实验,表明该算法在计算复杂度、聚类精度和全局寻优能力方面表现得较为突出。 展开更多
关键词 模糊聚类 粒子群优化 模糊C均值 可能性C均值
下载PDF
一种具有最优保证特性的贝叶斯可能性聚类方法 被引量:5
17
作者 刘解放 王士同 +1 位作者 王骏 邓赵红 《电子与信息学报》 EI CSCD 北大核心 2017年第7期1554-1562,共9页
该文结合概率理论和可能性理论,提出一种具有最优保证特性的贝叶斯可能性聚类新方法。首先,将未知隶属度和聚类中心作为随机变量,为每个随机变量选择一个合适的概率分布,提出贝叶斯可能性聚类模型;在此基础上,基于贝叶斯推理和和蒙特卡... 该文结合概率理论和可能性理论,提出一种具有最优保证特性的贝叶斯可能性聚类新方法。首先,将未知隶属度和聚类中心作为随机变量,为每个随机变量选择一个合适的概率分布,提出贝叶斯可能性聚类模型;在此基础上,基于贝叶斯推理和和蒙特卡洛采样方法,通过最大后验概率框架求解贝叶斯可能性聚类模型中的未知参数,从而提出一种具有最优保证特性的贝叶斯可能性聚类新方法。并对算法收敛性、算法复杂度等方面作了理论探讨。在合成数据集和真实数据集上的实验表明,所提算法扩展了传统可能性聚类性能,改进了聚类结果。 展开更多
关键词 可能性聚类 贝叶斯推理 最大后验概率 蒙特卡洛方法
下载PDF
基于核的可能性聚类算法 被引量:8
18
作者 吕佳 熊忠阳 《计算机工程与设计》 CSCD 北大核心 2006年第13期2466-2468,共3页
针对模糊C-均值算法聚类分析时的缺陷,采用能够较好地处理噪音和孤立点的可能性聚类算法,并将核学习方法的思想应用于可能性聚类算法中,提出一种基于核的可能性聚类算法。该方法利用Mercer核将观察空间的待分类样本点经过一个非线性映射... 针对模糊C-均值算法聚类分析时的缺陷,采用能够较好地处理噪音和孤立点的可能性聚类算法,并将核学习方法的思想应用于可能性聚类算法中,提出一种基于核的可能性聚类算法。该方法利用Mercer核将观察空间的待分类样本点经过一个非线性映射后,映射到一个高维的核空间,突出不同类别样本之间的特征差异,使得原来线性不可分的样本点在核空间中变得更加线性可分,从而更好地聚类。经仿真实验表明,基于核的可能性聚类算法比模糊C-均值以及可能性聚类算法具有更好的聚类效果,且算法能够很快地收敛。 展开更多
关键词 聚类分析 核函数 模糊C-均值 可能性聚类 基于核的可能性聚类
下载PDF
一种基于马氏距离的可能性聚类方法 被引量:14
19
作者 张翔 王士同 《数据采集与处理》 CSCD 北大核心 2011年第1期101-105,共5页
可能性聚类方法在数据分析和模式识别领域被广泛应用。本文通过选择马氏距离,构造一种特殊的基于马氏距离的可能性聚类方法。该方法在保持可能性聚类性能的同时,能有效地防止一致性聚类的发生,依照最大最小概率原理,根据聚类的结果直接... 可能性聚类方法在数据分析和模式识别领域被广泛应用。本文通过选择马氏距离,构造一种特殊的基于马氏距离的可能性聚类方法。该方法在保持可能性聚类性能的同时,能有效地防止一致性聚类的发生,依照最大最小概率原理,根据聚类的结果直接推断出聚类结果的误分下界,从而判断聚类的有效性。最后通过图像分割实验和标准数据集实验,验证了该算法的优越性。 展开更多
关键词 可能性聚类 马氏距离 最大最小概率 误分下界
下载PDF
基于样本-特征加权的可能性模糊核聚类算法 被引量:12
20
作者 黄卫春 刘建林 熊李艳 《计算机工程与科学》 CSCD 北大核心 2014年第1期169-175,共7页
经典的模糊C-均值聚类算法存在对噪声数据较为敏感、未考虑样本属性特征间的不平衡性及对高维数据聚类不理想等问题,而可能性聚类算法虽然解决了噪声敏感和一致性聚类问题,但算法假定每个样本对聚类的贡献程度一样。针对以上问题,提出... 经典的模糊C-均值聚类算法存在对噪声数据较为敏感、未考虑样本属性特征间的不平衡性及对高维数据聚类不理想等问题,而可能性聚类算法虽然解决了噪声敏感和一致性聚类问题,但算法假定每个样本对聚类的贡献程度一样。针对以上问题,提出了一种基于样本-特征加权的可能性模糊核聚类算法,将可能性聚类应用到模糊聚类中以提高其对噪声或例外点的抗干扰能力;同时,根据不同类的具体特性动态计算样本各个属性特征对不同类别的重要性权值及各个样本对聚类的重要性权值,并优化选取核参数,不断修正核函数把原始空间中非线性可分的数据集映射到高维空间中的可分数据集。实验结果表明,基于样本-特征加权模糊聚类算法能够减少噪声数据和例外点的影响,比传统的聚类算法具有更好的聚类准确率。 展开更多
关键词 样本加权 特征加权 模糊C均值 可能性模糊聚类 核函数
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部