Nostoc flagelliforme is a terrestrial cyanobacterium that can resist many types of stressors,including drought,ultraviolet radiation,and extreme temperatures.In this study,we identified the drought tolerance gene Nfcr...Nostoc flagelliforme is a terrestrial cyanobacterium that can resist many types of stressors,including drought,ultraviolet radiation,and extreme temperatures.In this study,we identified the drought tolerance gene NfcrtO,which encodes aβ-carotene ketolase,through screening the transcriptome of N.flagelliforme under water loss stress.Prokaryotic expression of NfcrtO under 0.6 mol/L sorbitol or under 0.3 mol/L NaCl stress significantly increased the growth rate of Escherichia coli.When NfcrtO was heterologously expressed in rice,the seedling height and root length of NfcrtO-overexpressing rice plants were significantly higher than those of the wild type(WT)plants grown on½Murashige and Skoog solid medium with 120 mmol/L mannitol at the seedling stage.Transcriptome analysis revealed that NfcrtO was involved in osmotic stress,antioxidant,and other stress-related pathways.Additionally,the survival rate of the NfcrtO-overexpression lines was significantly higher than that of the WT line under both hydroponic stress(24%PEG and 100 mmol/L H_(2)O_(2))and soil drought treatment at the seedling stage.Physiological traits,including the activity levels of superoxide dismutase,peroxidase,catalase,total antioxidant capacity,and the contents of proline,trehalose,and soluble sugar,were significantly improved in the NfcrtO-overexpression lines relative to those in the WT line under 20%PEG treatment.Furthermore,when water was withheld at the booting stage,the grain yield per plant of NfcrtO-overexpression lines was significantly higher than that of the WT line.Yeast two-hybrid analysis identified interactions between NfcrtO and Dna J protein,E3 ubiquitin-protein ligase,and pyrophosphate-energized vacuolar membrane proton pump.Thus,heterologous expression of NfcrtO in rice could significantly improve the tolerance of rice to osmotic stress,potentially facilitating the development of new rice varieties.展开更多
The conversion of r-carotene to astaxanthin is a complex pathway network, in which two steps of hydroxylation and two steps ofketolation are catalyzed by β-carotene hydroxylase (CrtZ) and β-carotene ketolase (Crt...The conversion of r-carotene to astaxanthin is a complex pathway network, in which two steps of hydroxylation and two steps ofketolation are catalyzed by β-carotene hydroxylase (CrtZ) and β-carotene ketolase (CrtW) respectively. Here, astaxanthin biosynthesis path- way was constructed in Saccharomyces cerevisiae by introducing heterologous CrtZ and CrtW into an existing high r-carotene producing strain. Both genes crtZ and crtW were codon optimized and expressed under the control of constitutive promoters. Through combinatorial expression of CrtZ and CrtW from diverse species, nine strains in dark red were visually chosen from thirty combinations. In all the selected strains, strain SyBE Scl 18060 with CrtW from Brevundimonas vesicu- laris DC263 and CrtZ from Alcaligenes sp. strain PC-1 achieved the highest astaxanthin yield of 3.1 mg/g DCW. Protein phylogenetic analysis shows that the shorter evolutionary distance of CrtW is, the higher astaxanthin titer is. Further, when the promoter of crtZ in strain SyBE_Scl 18060 was replaced from FBAlp to TEFlp, the astaxanthin yield was increased by 30.4% (from 3.4 to 4.5 mg/g DCW). In the meanwhile, 33.5-fold increase on crtZ transcription level and 39.1-fold enhancement on the transcriptional ratio of crtZ to crtWwere observed at early exponential phase in medium with 4% (w/v) glucose. Otherwise, although the ratio of crtZ to crtW were increased at mid-, late-exponential phases in medium with 2% (w/v) glucose, the transcription level of both crtZ and crtW were actually decreased during the whole timecourse, consequently leading to no significant improve- ment on astaxanthin production. Finally, through high cell density fed-batch fermentation using a carbon source restriction strategy, the production of astaxanthin in a 5-L bioreactor reached to 81.0 mg/L, which was the highest astaxanthin titer reported in yeast. This study provides a reference to greatly enhance lation by employing the key desired compounds accumu- enzyme(s) in microbes.展开更多
Carotenoids are important pigments in photosynthetic organisms where they play essential roles in photoreception and photoprotection.Chromochloris zofingiensis is a unicellular green alga that is able to accumulate hi...Carotenoids are important pigments in photosynthetic organisms where they play essential roles in photoreception and photoprotection.Chromochloris zofingiensis is a unicellular green alga that is able to accumulate high amounts of ketocarotenoids including astaxanthin,canthaxanthin and ketolutein when growing heterotrophically or mixotrophically with glucose as a carbon source.Here we elucidate the ketocarotenoid biosynthesis pathway in C.zofingiensis by analyzing five algal mutants.The mutants were shown to have a single nucleotide insertion or substitution in β-carotene ketolase(BKT) gene 1,which resulted in a lack of ketocarotenoid production in Cz-bktl-1,and decreased ketocarote noid co ntent in the other four mutants.These mutants accumulated much higher amounts of non-ketocarotenoids(β-carotene,zeaxanthin and lutein).Interestingly,the Cz-bktl-5 mutant synthesized 2-fold the ketolutein and only 1/30 of the canthaxanthin and astaxanthin as its parent strain,suggesting that the mutated BKT1 exhibits much higher activity in catalyzing lutein to ketolutein but lower activity in ketolating β-carotene and zeaxanthin.Mutant and WT BKT2 gene sequences did not differ.Taken together,we conclude that BKT1 is the key gene involved in ketocarotenoid biosynthesis in C.zofingiensis.Our study provides insight into the biosynthesis of ketocarotenoids in green algae.Furthermore,Cz-bktl mutants may serve as a natural source for the production of zeaxanthin,lutein,and β-carotene.展开更多
This study engineered β-carotene ketolase CrtW and β-carotene hydroxylase CrtZ to improve biosynthesis of astaxanthin in Escherichia coli. Firstly, crtW was randomly mutated to increase CrtW activities on conversion...This study engineered β-carotene ketolase CrtW and β-carotene hydroxylase CrtZ to improve biosynthesis of astaxanthin in Escherichia coli. Firstly, crtW was randomly mutated to increase CrtW activities on conversion from β-carotene to astaxanthin. A crtW* mutant with A6 T, T105 A and L239 M mutations has improved 5.35-fold astaxanthin production compared with the wild-type control. Secondly, the expression levels of crtW* and crtZ on chromosomal were balanced by simultaneous modulation RBS regions of their genes using RBS library. The strain RBS54 selected from RBS library, directed the pathway exclusively towards the desired product astaxanthin as predominant carotenoid(99%). Lastly, the number of chromosomal copies of the balanced crtW*-crtZ cassette from RBS54 was increased using a Cre-loxP based technique, and a strain with 30 copies of the crtW*-crtZ cassette was selected. This final strain DL-A008 had a 9.8-fold increase of astaxanthin production compared with the wild-type control. Fed-batch fermentation showed that DL-A008 produced astaxanthin as predominant carotenoid(99%) with a specific titer of 0.88 g·L^(-1) without addition of inducer. In conclusion, through constructing crtW mutation, balancing the expression levels between crtW* and crtZ, and increasing the copy number of the balanced crtW*-crtZ cassette, the activities of β-carotene ketolase and β-carotene hydroxylase were improved for conversion of β-carotene to astaxanthin with higher efficiency. The series of conventional and novel metabolic engineering strategies were designed and applied to construct the astaxanthin hetero-producer strain of E. coli, possibly offering a general approach for the construction of stable hetero-producer strains for other natural products.展开更多
β-carotene ketolase and β-carotene hydroxylase encoded by bkt and bch, respectively, are key enzymes required for astaxanthin biosynthesis in Haematococcu pluvialis 34-1n. Two expression vectors containing cDNA sequ...β-carotene ketolase and β-carotene hydroxylase encoded by bkt and bch, respectively, are key enzymes required for astaxanthin biosynthesis in Haematococcu pluvialis 34-1n. Two expression vectors containing cDNA sequences of bkt and bch were constructed and co-transformed into cell-wall-deficient Chlamydomonas reinhardtii CC-849. Transgenic algae were screened on TAP agar plates containing 10 gg mL 1 Zeomycin. PCR-Southern analysis showed that bkt and bch were integrated into the genomes of C. reinhardtii. Transcripts of bkt and bch were further confirmed by RT-PCR-Southern analysis. Compared with the wild type, transgenic algae produced 29.04% and 30.27% more carotenoids and xanthophylls, respectively. Moreover, the transgenic algae could accumulate 34% more astaxanthin than wild type. These results indicate that foreign bkt and bch genes were successfully translated into β-carotene ketolase and β-carotene hydroxylase, which were responsible for catalyzing the biosynthesis of astaxanthin in transgenic algae.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2018YFE0106200)the Science and Technology Research Project of Jiangxi Provincial Department of Education,China(Grant No.K4100131)the Science and Technology Research Project of Shangrao,Jiangxi Province,China(Grant No.K4000019).
文摘Nostoc flagelliforme is a terrestrial cyanobacterium that can resist many types of stressors,including drought,ultraviolet radiation,and extreme temperatures.In this study,we identified the drought tolerance gene NfcrtO,which encodes aβ-carotene ketolase,through screening the transcriptome of N.flagelliforme under water loss stress.Prokaryotic expression of NfcrtO under 0.6 mol/L sorbitol or under 0.3 mol/L NaCl stress significantly increased the growth rate of Escherichia coli.When NfcrtO was heterologously expressed in rice,the seedling height and root length of NfcrtO-overexpressing rice plants were significantly higher than those of the wild type(WT)plants grown on½Murashige and Skoog solid medium with 120 mmol/L mannitol at the seedling stage.Transcriptome analysis revealed that NfcrtO was involved in osmotic stress,antioxidant,and other stress-related pathways.Additionally,the survival rate of the NfcrtO-overexpression lines was significantly higher than that of the WT line under both hydroponic stress(24%PEG and 100 mmol/L H_(2)O_(2))and soil drought treatment at the seedling stage.Physiological traits,including the activity levels of superoxide dismutase,peroxidase,catalase,total antioxidant capacity,and the contents of proline,trehalose,and soluble sugar,were significantly improved in the NfcrtO-overexpression lines relative to those in the WT line under 20%PEG treatment.Furthermore,when water was withheld at the booting stage,the grain yield per plant of NfcrtO-overexpression lines was significantly higher than that of the WT line.Yeast two-hybrid analysis identified interactions between NfcrtO and Dna J protein,E3 ubiquitin-protein ligase,and pyrophosphate-energized vacuolar membrane proton pump.Thus,heterologous expression of NfcrtO in rice could significantly improve the tolerance of rice to osmotic stress,potentially facilitating the development of new rice varieties.
基金This work was supported by the International S&T Cooperation Program of China (2015DFA00960), the National Natural Science Foundation of China (Grant Nos. 31600052 and 21676192) and Innovative Talents and Platform Program of Tianjin (16PTSYJC00050).
文摘The conversion of r-carotene to astaxanthin is a complex pathway network, in which two steps of hydroxylation and two steps ofketolation are catalyzed by β-carotene hydroxylase (CrtZ) and β-carotene ketolase (CrtW) respectively. Here, astaxanthin biosynthesis path- way was constructed in Saccharomyces cerevisiae by introducing heterologous CrtZ and CrtW into an existing high r-carotene producing strain. Both genes crtZ and crtW were codon optimized and expressed under the control of constitutive promoters. Through combinatorial expression of CrtZ and CrtW from diverse species, nine strains in dark red were visually chosen from thirty combinations. In all the selected strains, strain SyBE Scl 18060 with CrtW from Brevundimonas vesicu- laris DC263 and CrtZ from Alcaligenes sp. strain PC-1 achieved the highest astaxanthin yield of 3.1 mg/g DCW. Protein phylogenetic analysis shows that the shorter evolutionary distance of CrtW is, the higher astaxanthin titer is. Further, when the promoter of crtZ in strain SyBE_Scl 18060 was replaced from FBAlp to TEFlp, the astaxanthin yield was increased by 30.4% (from 3.4 to 4.5 mg/g DCW). In the meanwhile, 33.5-fold increase on crtZ transcription level and 39.1-fold enhancement on the transcriptional ratio of crtZ to crtWwere observed at early exponential phase in medium with 4% (w/v) glucose. Otherwise, although the ratio of crtZ to crtW were increased at mid-, late-exponential phases in medium with 2% (w/v) glucose, the transcription level of both crtZ and crtW were actually decreased during the whole timecourse, consequently leading to no significant improve- ment on astaxanthin production. Finally, through high cell density fed-batch fermentation using a carbon source restriction strategy, the production of astaxanthin in a 5-L bioreactor reached to 81.0 mg/L, which was the highest astaxanthin titer reported in yeast. This study provides a reference to greatly enhance lation by employing the key desired compounds accumu- enzyme(s) in microbes.
文摘Carotenoids are important pigments in photosynthetic organisms where they play essential roles in photoreception and photoprotection.Chromochloris zofingiensis is a unicellular green alga that is able to accumulate high amounts of ketocarotenoids including astaxanthin,canthaxanthin and ketolutein when growing heterotrophically or mixotrophically with glucose as a carbon source.Here we elucidate the ketocarotenoid biosynthesis pathway in C.zofingiensis by analyzing five algal mutants.The mutants were shown to have a single nucleotide insertion or substitution in β-carotene ketolase(BKT) gene 1,which resulted in a lack of ketocarotenoid production in Cz-bktl-1,and decreased ketocarote noid co ntent in the other four mutants.These mutants accumulated much higher amounts of non-ketocarotenoids(β-carotene,zeaxanthin and lutein).Interestingly,the Cz-bktl-5 mutant synthesized 2-fold the ketolutein and only 1/30 of the canthaxanthin and astaxanthin as its parent strain,suggesting that the mutated BKT1 exhibits much higher activity in catalyzing lutein to ketolutein but lower activity in ketolating β-carotene and zeaxanthin.Mutant and WT BKT2 gene sequences did not differ.Taken together,we conclude that BKT1 is the key gene involved in ketocarotenoid biosynthesis in C.zofingiensis.Our study provides insight into the biosynthesis of ketocarotenoids in green algae.Furthermore,Cz-bktl mutants may serve as a natural source for the production of zeaxanthin,lutein,and β-carotene.
基金supported by the National Key R&D Program of China (No. 2019YFA0905700)the National Natural Science Foundation of China (No. 31870058)。
文摘This study engineered β-carotene ketolase CrtW and β-carotene hydroxylase CrtZ to improve biosynthesis of astaxanthin in Escherichia coli. Firstly, crtW was randomly mutated to increase CrtW activities on conversion from β-carotene to astaxanthin. A crtW* mutant with A6 T, T105 A and L239 M mutations has improved 5.35-fold astaxanthin production compared with the wild-type control. Secondly, the expression levels of crtW* and crtZ on chromosomal were balanced by simultaneous modulation RBS regions of their genes using RBS library. The strain RBS54 selected from RBS library, directed the pathway exclusively towards the desired product astaxanthin as predominant carotenoid(99%). Lastly, the number of chromosomal copies of the balanced crtW*-crtZ cassette from RBS54 was increased using a Cre-loxP based technique, and a strain with 30 copies of the crtW*-crtZ cassette was selected. This final strain DL-A008 had a 9.8-fold increase of astaxanthin production compared with the wild-type control. Fed-batch fermentation showed that DL-A008 produced astaxanthin as predominant carotenoid(99%) with a specific titer of 0.88 g·L^(-1) without addition of inducer. In conclusion, through constructing crtW mutation, balancing the expression levels between crtW* and crtZ, and increasing the copy number of the balanced crtW*-crtZ cassette, the activities of β-carotene ketolase and β-carotene hydroxylase were improved for conversion of β-carotene to astaxanthin with higher efficiency. The series of conventional and novel metabolic engineering strategies were designed and applied to construct the astaxanthin hetero-producer strain of E. coli, possibly offering a general approach for the construction of stable hetero-producer strains for other natural products.
基金supported by the National Natural Science Foundation of China(41176106,31470389,31470431)Shenzhen Grant Plan for Science & Technology(CXB201104210005A,JCYJ20120613112512654,JSGG20130411160539208)Guangdong Enterprise Academician Workstation(2011A090700015)
文摘β-carotene ketolase and β-carotene hydroxylase encoded by bkt and bch, respectively, are key enzymes required for astaxanthin biosynthesis in Haematococcu pluvialis 34-1n. Two expression vectors containing cDNA sequences of bkt and bch were constructed and co-transformed into cell-wall-deficient Chlamydomonas reinhardtii CC-849. Transgenic algae were screened on TAP agar plates containing 10 gg mL 1 Zeomycin. PCR-Southern analysis showed that bkt and bch were integrated into the genomes of C. reinhardtii. Transcripts of bkt and bch were further confirmed by RT-PCR-Southern analysis. Compared with the wild type, transgenic algae produced 29.04% and 30.27% more carotenoids and xanthophylls, respectively. Moreover, the transgenic algae could accumulate 34% more astaxanthin than wild type. These results indicate that foreign bkt and bch genes were successfully translated into β-carotene ketolase and β-carotene hydroxylase, which were responsible for catalyzing the biosynthesis of astaxanthin in transgenic algae.