期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
DM Code Key Point Detection Algorithm Based on CenterNet
1
作者 Wei Wang Xinyao Tang +2 位作者 Kai Zhou Chunhui Zhao Changfa Liu 《Computers, Materials & Continua》 SCIE EI 2023年第11期1911-1928,共18页
Data Matrix(DM)codes have been widely used in industrial production.The reading of DM code usually includes positioning and decoding.Accurate positioning is a prerequisite for successful decoding.Traditional image pro... Data Matrix(DM)codes have been widely used in industrial production.The reading of DM code usually includes positioning and decoding.Accurate positioning is a prerequisite for successful decoding.Traditional image processing methods have poor adaptability to pollution and complex backgrounds.Although deep learning-based methods can automatically extract features,the bounding boxes cannot entirely fit the contour of the code.Further image processing methods are required for precise positioning,which will reduce efficiency.Because of the above problems,a CenterNet-based DM code key point detection network is proposed,which can directly obtain the four key points of the DM code.Compared with the existing methods,the degree of fitness is higher,which is conducive to direct decoding.To further improve the positioning accuracy,an enhanced loss function is designed,including DM code key point heatmap loss,standard DM code projection loss,and polygon Intersection-over-Union(IoU)loss,which is beneficial for the network to learn the spatial geometric characteristics of DM code.The experiment is carried out on the self-made DM code key point detection dataset,including pollution,complex background,small objects,etc.,which uses the Average Precision(AP)of the common object detection metric as the evaluation metric.AP reaches 95.80%,and Frames Per Second(FPS)gets 88.12 on the test set of the proposed dataset,which can achieve real-time performance in practical applications. 展开更多
关键词 DM code key point detection CenterNet object detection enhanced loss function
下载PDF
Multi-Branch High-Dimensional Guided Transformer-Based 3D Human Posture Estimation
2
作者 Xianhua Li Haohao Yu +2 位作者 Shuoyu Tian Fengtao Lin Usama Masood 《Computers, Materials & Continua》 SCIE EI 2024年第3期3551-3564,共14页
The human pose paradigm is estimated using a transformer-based multi-branch multidimensional directed the three-dimensional(3D)method that takes into account self-occlusion,badly posedness,and a lack of depth data in ... The human pose paradigm is estimated using a transformer-based multi-branch multidimensional directed the three-dimensional(3D)method that takes into account self-occlusion,badly posedness,and a lack of depth data in the per-frame 3D posture estimation from two-dimensional(2D)mapping to 3D mapping.Firstly,by examining the relationship between the movements of different bones in the human body,four virtual skeletons are proposed to enhance the cyclic constraints of limb joints.Then,multiple parameters describing the skeleton are fused and projected into a high-dimensional space.Utilizing a multi-branch network,motion features between bones and overall motion features are extracted to mitigate the drift error in the estimation results.Furthermore,the estimated relative depth is projected into 3D space,and the error is calculated against real 3D data,forming a loss function along with the relative depth error.This article adopts the average joint pixel error as the primary performance metric.Compared to the benchmark approach,the estimation findings indicate an increase in average precision of 1.8 mm within the Human3.6M sample. 展开更多
关键词 key point detection 3D human posture estimation computer vision deep learning
下载PDF
Human steering angle estimation in video based on key point detection and Kalman filter
3
作者 Yanpeng Hu Yuxuan Liu +1 位作者 Yanguang Xu Yinghui Wang 《Control Theory and Technology》 EI CSCD 2022年第3期408-417,共10页
Human pose recognition and estimation in video is pervasive.However,the process noise and local occlusion bring great challenge to pose recognition.In this paper,we introduce the Kalman filter into pose recognition to... Human pose recognition and estimation in video is pervasive.However,the process noise and local occlusion bring great challenge to pose recognition.In this paper,we introduce the Kalman filter into pose recognition to reduce noise and solve local occlusion problem.The core of pose recognition in video is the fast detection of key points and the calculation of human steering angles.Thus,we first build a human key point detection model.Frame skipping is performed based on the Hamming distance of the hash value of every two adjacent frames in video.Noise reduction is performed on key point coordinates with the Kalman filter.To calculate the human steering angle,current state information of key points is predicted using the optimal estimation of key points at the previous time.Then human steering angle can be calculated based on current and previous state information.The improved SENet,NLNet and GCNet modules are integrated into key point detection model for improving accuracy.Tests are also given to illustrate the effectiveness of the proposed algorithm. 展开更多
关键词 key point detection Part affinity fields Kalman filter Human steering angle
原文传递
An Intelligent Framework for Recognizing Social Human-Object Interactions
4
作者 Mohammed Alarfaj Manahil Waheed +4 位作者 Yazeed Yasin Ghadi Tamara al Shloul Suliman A.Alsuhibany Ahmad Jalal Jeongmin Park 《Computers, Materials & Continua》 SCIE EI 2022年第10期1207-1223,共17页
Human object interaction(HOI)recognition plays an important role in the designing of surveillance and monitoring systems for healthcare,sports,education,and public areas.It involves localizing the human and object tar... Human object interaction(HOI)recognition plays an important role in the designing of surveillance and monitoring systems for healthcare,sports,education,and public areas.It involves localizing the human and object targets and then identifying the interactions between them.However,it is a challenging task that highly depends on the extraction of robust and distinctive features from the targets and the use of fast and efficient classifiers.Hence,the proposed system offers an automated body-parts-based solution for HOI recognition.This system uses RGB(red,green,blue)images as input and segments the desired parts of the images through a segmentation technique based on the watershed algorithm.Furthermore,a convex hullbased approach for extracting key body parts has also been introduced.After identifying the key body parts,two types of features are extracted.Moreover,the entire feature vector is reduced using a dimensionality reduction technique called t-SNE(t-distributed stochastic neighbor embedding).Finally,a multinomial logistic regression classifier is utilized for identifying class labels.A large publicly available dataset,MPII(Max Planck Institute Informatics)Human Pose,has been used for system evaluation.The results prove the validity of the proposed system as it achieved 87.5%class recognition accuracy. 展开更多
关键词 Dimensionality reduction human-object interaction key point detection machine learning watershed segmentation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部