期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Kinetic study of key species and reactions of atmospheric pressure pulsed corona discharge in humid air
1
作者 Yongkang PENG Xiaoyue CHEN +6 位作者 Yeqiang DENG Lei LAN Haoyu ZHAN Xuekai PEI Jiahao CHEN Yukuan YUAN Xishan WEN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第5期154-168,共15页
In this study, we examined the key particles and chemical reactions that substantially influence plasma characteristics. In summarizing the chemical reaction model for the discharge process of N_(2)–O_(2)–H_(2)O(g)m... In this study, we examined the key particles and chemical reactions that substantially influence plasma characteristics. In summarizing the chemical reaction model for the discharge process of N_(2)–O_(2)–H_(2)O(g)mixed gases, 65 particle types and 673 chemical reactions were investigated. On this basis, a global model of atmospheric pressure humid air discharge plasma was developed, with a focus on the variation of charged particles densities and chemical reaction rates with time under the excitation of a 0–200 Td pulsed electric field. Particles with a density greater than 1% of the electron density were classified as key particles. For such particles, the top ranking generation or consumption reactions(i.e. where the sum of their rates was greater than 95% of the total rate of the generation or consumption reactions) were classified as key chemical reactions. On the basis of the key particles and reactions identified, a simplified global model was derived. A comparison of the global model with the simplified global model in terms of the model parameters, particle densities, reaction rates(with time), and calculation efficiencies demonstrated that both models can adequately identify the key particles and chemical reactions reflecting the chemical process of atmospheric pressure discharge plasma in humid air. Thus, by analyzing the key particles and chemical reaction pathways, the charge and substance transfer mechanism of atmospheric pressure pulse discharge plasma in humid air was revealed, and the mechanism underlying water vapor molecules’ influence on atmospheric pressure air discharge was elucidated. 展开更多
关键词 atmospheric humid air key charged particles key chemical reactions reaction pathways
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部