When an extremely thick rock bed exists above a protected coal seam in the bending zone given the condition of a mining protective seam, this extremely thick rock bed controls the movement of the entire overlying stra...When an extremely thick rock bed exists above a protected coal seam in the bending zone given the condition of a mining protective seam, this extremely thick rock bed controls the movement of the entire overlying stratum. This extremely thick rock bed, called a "main key stratum", will not subside nor break for a long time, causing lower fractures and bed separations not to close and gas can migrate to the bed separation areas along the fractures. These bed separations become gas enrichment areas. By analyzing the rule of fracture evolution and gas migration under the main key stratum after the deep protective coal seam has been mined, we propose a new gas drainage method which uses bore holes, drilled through rock and coal seams at great depths for draining pressure relief gas. In this method, the bores are located at a high level suction roadway (we can also drill them in the drilling field located high in an air gateway). Given the practice in the Haizi mine, the gas drainage rate can reach 73% in the middie coal group, with a gas drainage radius over 100 m.展开更多
In the process of using the original key stratum theory to predict the height of a water-flowing fractured zone(WFZ),the influence of rock strata outside the calculation range on the rock strata within the calculation...In the process of using the original key stratum theory to predict the height of a water-flowing fractured zone(WFZ),the influence of rock strata outside the calculation range on the rock strata within the calculation range as well as the fact that the shape of the overburden deformation area will change with the excavation length are ignored.In this paper,an improved key stratum theory(IKS theory)was proposed by fixing these two shortcomings.Then,a WFZ height prediction method based on IKS theory was established and applied.First,the range of overburden involved in the analysis was determined according to the tensile stress distribution range above the goaf.Second,the key stratum in the overburden involved in the analysis was identified through IKS theory.Finally,the tendency of the WFZ to develop upward was determined by judging whether or not the identified key stratum will break.The proposed method was applied and verified in a mining case study,and the reasons for the differences in the development patterns between the WFZs in coalfields in Northwest and East China were also fully explained by this method.展开更多
During the underground mining of coal resources,overlying rocks on the roof of excavated tunnels will be destroyed due to ground pressure,and as a result,part of them will break and fall into the tunnels.How to determ...During the underground mining of coal resources,overlying rocks on the roof of excavated tunnels will be destroyed due to ground pressure,and as a result,part of them will break and fall into the tunnels.How to determine the distribution of fractured areas and fissures presents a major problem for preserving the overlying aquifer.展开更多
To analyze the influence of movement in shallow-buried working faces with large mining heights on mine pressure manifestation, the key stratum at a working face was categorised using the 1313 top-coal caving face with...To analyze the influence of movement in shallow-buried working faces with large mining heights on mine pressure manifestation, the key stratum at a working face was categorised using the 1313 top-coal caving face with super great mining height under cover as a case study. The research combined theoretical analysis, field measurement, and numerical simulation to analyze the influencing mechanism of key stratum. Moreover, the research results were verified by numerical simulation and indicate that the sub-key stratum is prone to be broken to form a "cantilever beam" structure rather than a stable hinged structure during the excavation of working faces with super great mining heights. When the "cantilever beam" structure is unstable, a low pressure will occur on the working face, and the overlying strata will subside simultaneously with the sub-key stratum to induce the breakage of the primary key stratum: the breakage will further trigger the periodic breakage of sub-key stratum, causing a greater load on the working face. Finally, steps, and strength of weighting in the working face vary to be great or small alternatively. This is the main reason explaining why the 1313 working face shows strong mine pressure manifestation. The results provide theoretical and practical experience for forecasting and controlling mine pressure manifestation.展开更多
Water-preservation mining is one of the most important parts of the ‘Green Mining' technology system,which can realize the effective regulation of groundwater resources by controlling strata movement,changing pas...Water-preservation mining is one of the most important parts of the ‘Green Mining' technology system,which can realize the effective regulation of groundwater resources by controlling strata movement,changing passive prevention and governance of water disasters to active conservation and utilization of groundwater resources and thus obtaining coal and water simultaneously in mining.The concept of water-resistant key strata further enriches the content of the key stratum theory and provides a theoretical basis for water-preservation mining.In order to realize the idea of water-resistant key strata as a guideline in the design of water-preservation mining and engineering applications,the conditions for discrimination in the process of water-resistant key strata,we have presented a mechanical model,as well as its corresponding computer program,based on a large number of theoretical analyses and field measurements,as well as on a comprehensive consideration of the position,structural stability and seepage stability of key strata.Practical engineering applications indicate that this discrimination method and its corresponding computer program on water-resistant key strata are accurate and reliable and can satisfy the actual design needs of water-preservation mining and thus have instructional importance for water-preservation mining in mining areas lacking water.展开更多
As China's energy strategy moving westward, the surface movement and deformation characteristics due to high-intensive coal mining in the windy and sandy region become a research hotspot. Surface movement observation...As China's energy strategy moving westward, the surface movement and deformation characteristics due to high-intensive coal mining in the windy and sandy region become a research hotspot. Surface movement observation stations were established to monitor movement and deformation in one super-large working face. Based on field measurements, the surface movement and deformation characteristics were obtained, including angle parameters, subsidence prediction parameters, etc. Besides, the angle and subsidence prediction parameters in similar mining areas are summarized; the mechanism of surface movement and deformation was analyzed with the combination of key stratum theory, mining and geological conditions. The research also indicates that compared with conventional working faces, uniform subsidence area of the subsidence trough in the windy and sandy region is larger, the trough margins are relative steep and deformation values present convergence at the margins, the extent of the trough shrink towards the goaf and the influence time of mining activities lasts shorter; the overlying rock movement and breaking characteristics presents regional particularity in the study area, while the single key stratum, thin bedrock and thick sand that can rapidly propagate movement and deformation are the deep factors, contributing to it.展开更多
Gob-area roof rupture movement is a key disturbance factor for gob-side entry retaining.The characteristics of gob-area sequential roof collapse of overlying strata and superposed disturbance mechanism for gob-side en...Gob-area roof rupture movement is a key disturbance factor for gob-side entry retaining.The characteristics of gob-area sequential roof collapse of overlying strata and superposed disturbance mechanism for gob-side entry retaining are obtained via physical simulation and theoretical analysis,in which the scope of disturbed strata is enlarged from main roof to fracture zone.The experiment reveals that as a working face advances,roof strata sequentially collapse from bottom to top and produce multiple disturbances to gob-side entry retaining.Key strata among the overlying strata control each collapse.Main roof subsidence is divided into three stages:flexure subsidence prior to rupture,rotational subsidence during rupture and compressive subsidence after rupture.The amounts of deformation evident in each of the three stages are 15%,55%and 30%,respectively.After the master stratum collapses,main roof subsidence approaches its maximum value.The final span of the key stratum determines the moment and cycling of gob-side entry retaining disturbances.Main roof subsidence influences the load on the filling wall.The sequential roof collapse of overlying strata results in fluctuations in the gob-side entry retaining deformation.Calculation formulae for the final span of the key stratum and the filling wall load are obtained via theoretical analysis.A control method for the stability of the gob-side entry retaining’s surrounding rock is proposed,which includes 3 measures:a“dual-layer”proactive anchorage support,roadside filling with dynamic strength matching and auxiliary support during disturbance.Finally,the gob-side entry retaining of the Xiaoqing mine E1403 working face is presented as an engineering case capable of verifying the validity of the research conclusions.展开更多
The key problem to be solved urgently is how to avoid the occurrence of support break-off and water inrush in the stoping of sandstone straight roof under the action of load transfer in unconsolidated aquifer.For this...The key problem to be solved urgently is how to avoid the occurrence of support break-off and water inrush in the stoping of sandstone straight roof under the action of load transfer in unconsolidated aquifer.For this reason,taking the thin bedrock 1602(3)working face of Huainan(the middle part of Anhui Province)Panyi Coal Mine as the engineering background,this study establishes the stope mining model by using the discrete element UDEC software and the mathematics mechanical model of the support load,and analyzes the reason of support crushing and decides to re-mining the working face by using the compulsive roof caving method.It is concluded that when the working face of sandstone straight roof is broken,the"voussoir beam"structure cannot be formed and acts on the support in the form of cantilever beam,but only when it falls to the high key stratum can the"voussoir beam"structure be formed and at this point,at this time,the bracket bears the weight of the rock layer in the range from the fractured sandstone layer to the lower critical layer.The working resistance of the support increases with the increase of the thickness and the breaking length of straight sandstone roof.When the breaking length of the roof reaches a certain extreme value,the support crushing accidents will occur.Managing roof with compulsive roof caving method can reduce the intensity of rock pressure in the stope,and the working face can be safely stoped,which provides a certain reference for similar conditions.展开更多
Support crushing and water inrush when mining under an unconsolidated confined aquifer in the Qidong Coal Mine was prevented by roof pre-blasting. The mechanism and applicable conditions for this method have been stud...Support crushing and water inrush when mining under an unconsolidated confined aquifer in the Qidong Coal Mine was prevented by roof pre-blasting. The mechanism and applicable conditions for this method have been studied. The results show that when an overburden structure that may cause support crushing and a water inrush accident exists the weakening of the primary key stratum, which thereby reduces its weighting step, roof pre-blasting is both feasible and effective. If the position of the primary key stratum can be moved upward to exceed 10 times the mining height the possibility of support crushing and water inrush disaster caused by key stratum compound breakage will be lowered. The overburden structure of the number 7121 working face was considered during the design of a technical proposal involving roof pre-blasting. After comprehensively analyzing the applicability of roof pre-blasting the resulting design prevented support crushing and water inrush disasters from happening at the number 7121 working face and laid a solid foundation for mining safely.展开更多
We analyzed the deformation characteristics of overlying stratum in backfilling with fully-mechanized and retaining roadways along the gob area coal mining technology, and established a mechanical model for the roof k...We analyzed the deformation characteristics of overlying stratum in backfilling with fully-mechanized and retaining roadways along the gob area coal mining technology, and established a mechanical model for the roof key stratum of retaining roadways along gob under the conditions of backfilling and fully- mechanized coal mining technology. Using Winkler elastic foundation theory, we analyzed a part of the key stratum under the action of elastic foundation coupling problem, and derived deflection analyt- ical expressions. Combined with specific conditions, we obtained the deflection curves for the roof key stratum of retaining roadways along gob under the conditions of backfilling and fully-mechanized coal mining technology. On this basis, we adopted the Coulomb's earth pressure theory to solve the problem of lateral pressure of the gangue filling area on the supporting wall beside the roadway and to provide the theoretical basis for reasonable selection of the distance between gangue concrete wall and roof and fur- ther discussion on the supporting stability of roadway.展开更多
Coalbed methane is of great value to extract and utilize in China, but the result of such research is not satisfied yet today.The paper analyzed the storage characteristics of coalbed methane, and then studied the beh...Coalbed methane is of great value to extract and utilize in China, but the result of such research is not satisfied yet today.The paper analyzed the storage characteristics of coalbed methane, and then studied the behavior of coalbed methane using the key stratum theory of strata control.According to the features related to coalbed methane accumulations and delivery, the technique for safely simultaneous extraction of coal and coalbed methane is proposed, and benefit analysis is made too.展开更多
基金Projects 2005CB221503 supported by the National Basic Research Program of China70533050 and 50674089 by the National Natural Science Foundation of China2005BA813B-3-06 by the National Tenth 5-Year Key Scientific and Technological Project
文摘When an extremely thick rock bed exists above a protected coal seam in the bending zone given the condition of a mining protective seam, this extremely thick rock bed controls the movement of the entire overlying stratum. This extremely thick rock bed, called a "main key stratum", will not subside nor break for a long time, causing lower fractures and bed separations not to close and gas can migrate to the bed separation areas along the fractures. These bed separations become gas enrichment areas. By analyzing the rule of fracture evolution and gas migration under the main key stratum after the deep protective coal seam has been mined, we propose a new gas drainage method which uses bore holes, drilled through rock and coal seams at great depths for draining pressure relief gas. In this method, the bores are located at a high level suction roadway (we can also drill them in the drilling field located high in an air gateway). Given the practice in the Haizi mine, the gas drainage rate can reach 73% in the middie coal group, with a gas drainage radius over 100 m.
基金supported by the Key Projects of Natural Science Foundation of China(No.41931284)the Scientific Research Start-Up Fund for High-Level Introduced Talents of Anhui University of Science and Technology(No.2022yjrc21).
文摘In the process of using the original key stratum theory to predict the height of a water-flowing fractured zone(WFZ),the influence of rock strata outside the calculation range on the rock strata within the calculation range as well as the fact that the shape of the overburden deformation area will change with the excavation length are ignored.In this paper,an improved key stratum theory(IKS theory)was proposed by fixing these two shortcomings.Then,a WFZ height prediction method based on IKS theory was established and applied.First,the range of overburden involved in the analysis was determined according to the tensile stress distribution range above the goaf.Second,the key stratum in the overburden involved in the analysis was identified through IKS theory.Finally,the tendency of the WFZ to develop upward was determined by judging whether or not the identified key stratum will break.The proposed method was applied and verified in a mining case study,and the reasons for the differences in the development patterns between the WFZs in coalfields in Northwest and East China were also fully explained by this method.
基金supported by the State Key Program of National Natural Science of China(Grant No.41130637)
文摘During the underground mining of coal resources,overlying rocks on the roof of excavated tunnels will be destroyed due to ground pressure,and as a result,part of them will break and fall into the tunnels.How to determine the distribution of fractured areas and fissures presents a major problem for preserving the overlying aquifer.
基金Project(2015-29)supported by Jiangsu Distinguished Professor,ChinaProject(BRA2015311)supported by the Jiangsu Province Fourth 333 Engineering,China
文摘To analyze the influence of movement in shallow-buried working faces with large mining heights on mine pressure manifestation, the key stratum at a working face was categorised using the 1313 top-coal caving face with super great mining height under cover as a case study. The research combined theoretical analysis, field measurement, and numerical simulation to analyze the influencing mechanism of key stratum. Moreover, the research results were verified by numerical simulation and indicate that the sub-key stratum is prone to be broken to form a "cantilever beam" structure rather than a stable hinged structure during the excavation of working faces with super great mining heights. When the "cantilever beam" structure is unstable, a low pressure will occur on the working face, and the overlying strata will subside simultaneously with the sub-key stratum to induce the breakage of the primary key stratum: the breakage will further trigger the periodic breakage of sub-key stratum, causing a greater load on the working face. Finally, steps, and strength of weighting in the working face vary to be great or small alternatively. This is the main reason explaining why the 1313 working face shows strong mine pressure manifestation. The results provide theoretical and practical experience for forecasting and controlling mine pressure manifestation.
基金supported by the National Natural Science Foundation of China (No.50874103)the National Basic Research Program of China (Nos.2006CB202210 and 2007CB209408)+1 种基金the Natural Science Foundation of Jiangsu Province (No.KB2008135)the Qinglan Project of Jiangsu Province
文摘Water-preservation mining is one of the most important parts of the ‘Green Mining' technology system,which can realize the effective regulation of groundwater resources by controlling strata movement,changing passive prevention and governance of water disasters to active conservation and utilization of groundwater resources and thus obtaining coal and water simultaneously in mining.The concept of water-resistant key strata further enriches the content of the key stratum theory and provides a theoretical basis for water-preservation mining.In order to realize the idea of water-resistant key strata as a guideline in the design of water-preservation mining and engineering applications,the conditions for discrimination in the process of water-resistant key strata,we have presented a mechanical model,as well as its corresponding computer program,based on a large number of theoretical analyses and field measurements,as well as on a comprehensive consideration of the position,structural stability and seepage stability of key strata.Practical engineering applications indicate that this discrimination method and its corresponding computer program on water-resistant key strata are accurate and reliable and can satisfy the actual design needs of water-preservation mining and thus have instructional importance for water-preservation mining in mining areas lacking water.
基金Financial supports for this work, are provided by the National Natural Science Foundation of China (NSFC) & Shenhua Group Corporation Limited key support project of the coal joint fund (U1361203) and NSFC under Grant No. 41501562. Thanks are also due to some participants for rendering assistant cooperation during studies.
文摘As China's energy strategy moving westward, the surface movement and deformation characteristics due to high-intensive coal mining in the windy and sandy region become a research hotspot. Surface movement observation stations were established to monitor movement and deformation in one super-large working face. Based on field measurements, the surface movement and deformation characteristics were obtained, including angle parameters, subsidence prediction parameters, etc. Besides, the angle and subsidence prediction parameters in similar mining areas are summarized; the mechanism of surface movement and deformation was analyzed with the combination of key stratum theory, mining and geological conditions. The research also indicates that compared with conventional working faces, uniform subsidence area of the subsidence trough in the windy and sandy region is larger, the trough margins are relative steep and deformation values present convergence at the margins, the extent of the trough shrink towards the goaf and the influence time of mining activities lasts shorter; the overlying rock movement and breaking characteristics presents regional particularity in the study area, while the single key stratum, thin bedrock and thick sand that can rapidly propagate movement and deformation are the deep factors, contributing to it.
基金Project(51404251)supported by the National Natural Science Foundation of ChinaProject(BK20140198)supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Project(PPZY2015A046)supported by the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Gob-area roof rupture movement is a key disturbance factor for gob-side entry retaining.The characteristics of gob-area sequential roof collapse of overlying strata and superposed disturbance mechanism for gob-side entry retaining are obtained via physical simulation and theoretical analysis,in which the scope of disturbed strata is enlarged from main roof to fracture zone.The experiment reveals that as a working face advances,roof strata sequentially collapse from bottom to top and produce multiple disturbances to gob-side entry retaining.Key strata among the overlying strata control each collapse.Main roof subsidence is divided into three stages:flexure subsidence prior to rupture,rotational subsidence during rupture and compressive subsidence after rupture.The amounts of deformation evident in each of the three stages are 15%,55%and 30%,respectively.After the master stratum collapses,main roof subsidence approaches its maximum value.The final span of the key stratum determines the moment and cycling of gob-side entry retaining disturbances.Main roof subsidence influences the load on the filling wall.The sequential roof collapse of overlying strata results in fluctuations in the gob-side entry retaining deformation.Calculation formulae for the final span of the key stratum and the filling wall load are obtained via theoretical analysis.A control method for the stability of the gob-side entry retaining’s surrounding rock is proposed,which includes 3 measures:a“dual-layer”proactive anchorage support,roadside filling with dynamic strength matching and auxiliary support during disturbance.Finally,the gob-side entry retaining of the Xiaoqing mine E1403 working face is presented as an engineering case capable of verifying the validity of the research conclusions.
基金The authors are grateful to the National Natural Science Foundation of China(Nos.51574007 and 51604007).
文摘The key problem to be solved urgently is how to avoid the occurrence of support break-off and water inrush in the stoping of sandstone straight roof under the action of load transfer in unconsolidated aquifer.For this reason,taking the thin bedrock 1602(3)working face of Huainan(the middle part of Anhui Province)Panyi Coal Mine as the engineering background,this study establishes the stope mining model by using the discrete element UDEC software and the mathematics mechanical model of the support load,and analyzes the reason of support crushing and decides to re-mining the working face by using the compulsive roof caving method.It is concluded that when the working face of sandstone straight roof is broken,the"voussoir beam"structure cannot be formed and acts on the support in the form of cantilever beam,but only when it falls to the high key stratum can the"voussoir beam"structure be formed and at this point,at this time,the bracket bears the weight of the rock layer in the range from the fractured sandstone layer to the lower critical layer.The working resistance of the support increases with the increase of the thickness and the breaking length of straight sandstone roof.When the breaking length of the roof reaches a certain extreme value,the support crushing accidents will occur.Managing roof with compulsive roof caving method can reduce the intensity of rock pressure in the stope,and the working face can be safely stoped,which provides a certain reference for similar conditions.
基金the National Natural Science Foundation of China (No. 50974116)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (SZBF2011-6-B35) for their financial support
文摘Support crushing and water inrush when mining under an unconsolidated confined aquifer in the Qidong Coal Mine was prevented by roof pre-blasting. The mechanism and applicable conditions for this method have been studied. The results show that when an overburden structure that may cause support crushing and a water inrush accident exists the weakening of the primary key stratum, which thereby reduces its weighting step, roof pre-blasting is both feasible and effective. If the position of the primary key stratum can be moved upward to exceed 10 times the mining height the possibility of support crushing and water inrush disaster caused by key stratum compound breakage will be lowered. The overburden structure of the number 7121 working face was considered during the design of a technical proposal involving roof pre-blasting. After comprehensively analyzing the applicability of roof pre-blasting the resulting design prevented support crushing and water inrush disasters from happening at the number 7121 working face and laid a solid foundation for mining safely.
基金supported by the National Natural Science Foundation of China (Nos. 51074163 and 50834005)the Ministry of Education Support Program for New Century Excellent of China(No. NCET-08-0837)the Fundamental Research Funds for the Central Universities of China
文摘We analyzed the deformation characteristics of overlying stratum in backfilling with fully-mechanized and retaining roadways along the gob area coal mining technology, and established a mechanical model for the roof key stratum of retaining roadways along gob under the conditions of backfilling and fully- mechanized coal mining technology. Using Winkler elastic foundation theory, we analyzed a part of the key stratum under the action of elastic foundation coupling problem, and derived deflection analyt- ical expressions. Combined with specific conditions, we obtained the deflection curves for the roof key stratum of retaining roadways along gob under the conditions of backfilling and fully-mechanized coal mining technology. On this basis, we adopted the Coulomb's earth pressure theory to solve the problem of lateral pressure of the gangue filling area on the supporting wall beside the roadway and to provide the theoretical basis for reasonable selection of the distance between gangue concrete wall and roof and fur- ther discussion on the supporting stability of roadway.
文摘Coalbed methane is of great value to extract and utilize in China, but the result of such research is not satisfied yet today.The paper analyzed the storage characteristics of coalbed methane, and then studied the behavior of coalbed methane using the key stratum theory of strata control.According to the features related to coalbed methane accumulations and delivery, the technique for safely simultaneous extraction of coal and coalbed methane is proposed, and benefit analysis is made too.