Recently,many rapid developments in digital medical imaging have made further contributions to health care systems.The segmentation of regions of interest in medical images plays a vital role in assisting doctors with...Recently,many rapid developments in digital medical imaging have made further contributions to health care systems.The segmentation of regions of interest in medical images plays a vital role in assisting doctors with their medical diagnoses.Many factors like image contrast and quality affect the result of image segmentation.Due to that,image contrast remains a challenging problem for image segmentation.This study presents a new image enhancement model based on fractional Rényi entropy for the segmentation of kidney MRI scans.The proposed work consists of two stages:enhancement by fractional Rényi entropy,and MRI Kidney deep segmentation.The proposed enhancement model exploits the pixel’s probability representations for image enhancement.Since fractional Rényi entropy involves fractional calculus that has the ability to model the non-linear complexity problem to preserve the spatial relationship between pixels,yielding an overall better details of the kidney MRI scans.In the second stage,the deep learning kidney segmentation model is designed to segment kidney regions in MRI scans.The experimental results showed an average of 95.60%dice similarity index coefficient,which indicates best overlap between the segmented bodies with the ground truth.It is therefore concluded that the proposed enhancement model is suitable and effective for improving the kidney segmentation performance.展开更多
Automatic kidney segmentation from abdominal CT images is a key step in computer-aided diagnosis for kidney CT as well as computeraided surgery. However, kidney segmentation from CT images is generally performed manua...Automatic kidney segmentation from abdominal CT images is a key step in computer-aided diagnosis for kidney CT as well as computeraided surgery. However, kidney segmentation from CT images is generally performed manually or semi-autornatically because of gray levels similarities of adjacent organs/tissues in abdominal CT images. This paper presents an efficient algorithm for segmenting kidney from serials of abdominal CT images. First, we extracted estimated kidney position (EKP) according to the statistical geometric location of kidney within the abdomen. Second, we analyzed the intensity distribution of EKP for several abdominal CT images and exploit an adaptive threshold searching algorithm to eliminate many other organs/tissues in the EKP. Finally, a novel region growing approach based on labeling is used to obtain the fine kidney regions. Experimental results are comparable to those of manual tracing radiologist and shown to be efficient.展开更多
基金funded by the deanship of scientific research at princess Nourah bint Abdulrahman University through the fast-track research-funding program.
文摘Recently,many rapid developments in digital medical imaging have made further contributions to health care systems.The segmentation of regions of interest in medical images plays a vital role in assisting doctors with their medical diagnoses.Many factors like image contrast and quality affect the result of image segmentation.Due to that,image contrast remains a challenging problem for image segmentation.This study presents a new image enhancement model based on fractional Rényi entropy for the segmentation of kidney MRI scans.The proposed work consists of two stages:enhancement by fractional Rényi entropy,and MRI Kidney deep segmentation.The proposed enhancement model exploits the pixel’s probability representations for image enhancement.Since fractional Rényi entropy involves fractional calculus that has the ability to model the non-linear complexity problem to preserve the spatial relationship between pixels,yielding an overall better details of the kidney MRI scans.In the second stage,the deep learning kidney segmentation model is designed to segment kidney regions in MRI scans.The experimental results showed an average of 95.60%dice similarity index coefficient,which indicates best overlap between the segmented bodies with the ground truth.It is therefore concluded that the proposed enhancement model is suitable and effective for improving the kidney segmentation performance.
基金National Natural Science Foundations of China (No.60601025, No.60701022, No.30770561)
文摘Automatic kidney segmentation from abdominal CT images is a key step in computer-aided diagnosis for kidney CT as well as computeraided surgery. However, kidney segmentation from CT images is generally performed manually or semi-autornatically because of gray levels similarities of adjacent organs/tissues in abdominal CT images. This paper presents an efficient algorithm for segmenting kidney from serials of abdominal CT images. First, we extracted estimated kidney position (EKP) according to the statistical geometric location of kidney within the abdomen. Second, we analyzed the intensity distribution of EKP for several abdominal CT images and exploit an adaptive threshold searching algorithm to eliminate many other organs/tissues in the EKP. Finally, a novel region growing approach based on labeling is used to obtain the fine kidney regions. Experimental results are comparable to those of manual tracing radiologist and shown to be efficient.