期刊文献+
共找到8,363篇文章
< 1 2 250 >
每页显示 20 50 100
Evaluation of slope stability through rock mass classification and kinematic analysis of some major slopes along NH-1A from Ramban to Banihal, North Western Himalayas 被引量:2
1
作者 Amit Jaiswal A.K.Verma T.N.Singh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期167-182,共16页
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil... The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road. 展开更多
关键词 Rock mass classification kinematic analysis slope stability Himalayan road static and dynamic conditions
下载PDF
An approach for determination of lateral limit angle in kinematic planar sliding analysis for rock slopes
2
作者 Xiaojuan Yang Jie Hu +1 位作者 Honglei Sun Jun Zheng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1305-1314,共10页
Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar slid... Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar sliding kinematic analysis is significantly influenced by the value assigned to the lateral limit angleγlim.However,the assignment ofγlim is currently used generally based on an empirical criterion.This study aims to propose an approach for determining the value ofγlim in deterministic and probabilistic kinematic planar sliding analysis.A new perspective is presented to reveal thatγlim essentially influences the probability of forming a potential planar sliding block.The procedure to calculate this probability is introduced using the block theory method.It is found that the probability is correlated with the number of discontinuity sets presented in rock masses.Thus,different values ofγlim for rock masses with different sets of discontinuities are recommended in both probabilistic and deterministic planar sliding kinematic analyses;whereas a fixed value ofγlim is commonly assigned to different types of rock masses in traditional method.Finally,an engineering case was used to compare the proposed and traditional kinematic analysis methods.The error rates of the traditional method vary from 45%to 119%,while that of the proposed method ranges between 1%and 17%.Therefore,it is likely that the proposed method is superior to the traditional one. 展开更多
关键词 kinematic analysis Block theory Planar sliding Lateral limit angle Rock slope
下载PDF
Gait Kinematic Analysis Facilitates Rapid Early Recovery Following Total Knee Arthroplasty
3
作者 Shiluan Liu Zhengyu Cao +4 位作者 Saijiao Lan Chongjing Zhang Lin Pan Wenjin Luo Jian Li 《Journal of Biosciences and Medicines》 2024年第10期328-338,共11页
Objective: To explore gait kinematics analysis and evaluate the surgical efficacy of total knee arthroplasty (TKA), as well as its guiding significance for postoperative rehabilitation. Method: Fifty patients admitted... Objective: To explore gait kinematics analysis and evaluate the surgical efficacy of total knee arthroplasty (TKA), as well as its guiding significance for postoperative rehabilitation. Method: Fifty patients admitted to TKA treatment for knee osteoarthritis from December 2022 to July 2023 were included, which were divided into an intervention group (gait kinematics analysis group, n = 25) and a control group (conventional rehabilitation program group, n = 25). All patients underwent HSS score and KSS score before surgery (T0), 1 month after surgery (T1), 3 months after surgery (T2), and 6 months after surgery (T3). The intervention group underwent gait kinematics analysis at 1 month after surgery (T1) and 3 months after surgery (T2). Two groups measured the hip knee ankle angle (HKA), distal femoral lateral angle (LDFA), and proximal tibial medial angle (MPTA) on knee joint radiographs before and after surgery. Results: There was no significant difference in general information, preoperative imaging parameters, and functional scores between the two groups of patients. There was no significant difference in functional scores and postoperative prosthesis alignment between the two groups of patients in the first month after surgery. The intervention group showed a significant decrease in gait kinematic scores in the first month, with hip joint scores being particularly prominent (P 0.05). Conclusion: Gait kinematic analysis is helpful in evaluating the postoperative efficacy of TKA and can guide early and rapid recovery after TKA. 展开更多
关键词 Gait kinematic analysis Total Knee Arthroplasty
下载PDF
Three Dimensional Kinematics Analysis of the Independent Suspension Multibody System 被引量:2
4
作者 陈欣 林逸 +1 位作者 孙大刚 白文辉 《Journal of Beijing Institute of Technology》 EI CAS 1997年第4期80-86,共7页
Based on the theory of multibody system dynamics, the spatial kinematics analysis of the Mcpherson independent suspension widely used in the car was carried out. A practical and simpler method was provided to reduce t... Based on the theory of multibody system dynamics, the spatial kinematics analysis of the Mcpherson independent suspension widely used in the car was carried out. A practical and simpler method was provided to reduce the number of the generalized coordinates and constraint functions. By solving the nonlinear equations, the motion of any points in the whole suspension and wheel system can be predicted, including the spatial changes of the wheel alignment parameters which are of great importance to the car performances. 展开更多
关键词 independent suspension three dimension kinematic analysis multibody system
下载PDF
Analysis and Simulation of Kinematical Performances of Two Kinds of Parallel Mechanisms Based on the Plane Sprayer 被引量:1
5
作者 DENG Jia-ming HE Hui-hui TANG Da-mei 《International Journal of Plant Engineering and Management》 2011年第4期237-242,共6页
Two kinds of 2-dof parallel mechanisms are proposed in this paper which can be used as the actuator for the plane sprayer. The direct and inverse kinematics solutions of the two kinds of mechanisms are derived on the ... Two kinds of 2-dof parallel mechanisms are proposed in this paper which can be used as the actuator for the plane sprayer. The direct and inverse kinematics solutions of the two kinds of mechanisms are derived on the end operating point and two workspaces are analyzed and compared. The kinematics models of the end operating point of two mechanisms are simulated by Matlab examples obtaining variation of kinematics parameters of these two mechanisms. The research of this paper provides the basis for the selection of mechanism, trajectory planning of the end operating point on the sprayer and often some practical value for trajectory analysis and structure design of the plane sprayer. 展开更多
关键词 sPRAYER parallel mechanism kinematics analysis kinematics simulation
下载PDF
Kinematic and Dynamic Analysis of a 3-■US Spatial Parallel Manipulator 被引量:13
6
作者 Mervin Joe Thomas M.L.Joy A.P.Sudheer 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第1期114-130,共17页
Parallel Kinematic Machines(PKMs)are being widely used for precise applications to achieve complex motions and variable poses for the end effector tool.PKMs are found in medical,assembly and manufacturing industries w... Parallel Kinematic Machines(PKMs)are being widely used for precise applications to achieve complex motions and variable poses for the end effector tool.PKMs are found in medical,assembly and manufacturing industries where accuracy is necessary.It is often desired to have a compact and simple architecture for the robotic mechanism.In this paper,the kinematic and dynamic analysis of a novel 3-PRUS(P:prismatic joint,R:revolute joint,U:universal joint,S:spherical joint)parallel manipulator with a mobile platform having 6 Degree of Freedom(Do F)is explained.The kinematic equations for the proposed spatial parallel mechanism are formulated using the Modified Denavit-Hartenberg(DH)technique considering both active and passive joints.The kinematic equations are used to derive the Jacobian matrix of the mechanism to identify the singular points within the workspace.A Jacobian based sti ness analysis is done to understand the variations in sti ness for different poses of the mobile platform and further,it is used to decide trajectories for the end effector within the singularity free region.The analytical model of the robot dynamics is presented using the Euler-Lagrangian approach with Lagrangian multipliers to include the system constraints.The gravity and inertial forces of all links are considered in the mathematical model.The analytical results of the dynamic model are compared with ADAMS simulation results for a pre-defined trajectory of the end effector. 展开更多
关键词 Parallel manipulator kinematic MODELLING WORKsPACE analysis Euler-Lagrangian MODELLING singularity analysis stiffness analysis
下载PDF
INVERSE KINEMATIC AND DYNAMIC ANALYSIS OF A 3-DOF PARALLEL MECHANISM 被引量:23
7
作者 LiJianfeng WangJinsong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第1期54-58,共5页
According to the structure character of the passive sub-chain of the 3TPS-TPparallel mechanism, the kinematic constraint equations of the movable platform are established,based on which the closed-form inverse kinemat... According to the structure character of the passive sub-chain of the 3TPS-TPparallel mechanism, the kinematic constraint equations of the movable platform are established,based on which the closed-form inverse kinematics formula of the parallel mechanism are presented.Through parting the spherical joints of the active sub-chains and using the force and momentequilibrium of both the active sub-chains and passive sub-chain, the constraint forces acting on theparted joints are determined. Subsequently, the analytic expressions of the actuator driving forcesare derived by means of the force equilibrium of the upper links of active sub-chains. 展开更多
关键词 3TPs-TP parallel mechanism kinematics DYNAMICs analysis
下载PDF
Kinematics Analysis of Mechanisms Based on Virtual Assembly 被引量:6
8
作者 ZHANG Zhixian LIU Jianhua NING Ruxin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第6期748-757,共10页
Currently, virtual assembly technology has attracted increasing attention due to considerations of solving assembly problems in virtual environment before actual assembly in manufactory. Previous studies on kinematic ... Currently, virtual assembly technology has attracted increasing attention due to considerations of solving assembly problems in virtual environment before actual assembly in manufactory. Previous studies on kinematic analysis of mechanism only aim at analyzing motion law of single mechanism, but can not simulate the multi-mechanisms motion process at the same time, let alone simulating the automatic assembly process of products in a whole assembly workshop. In order to simulate the assembly process of products in an assembly workshop and provide effective data for analyzing mechanical performance after finishing assembly simulation in virtual environment, this study investigates the kinematics analysis of mechanisms based on virtual assembly. Firstly, in view of the same function of the kinematic pairs and the assembly constraints on restricting the motion of components (subassembly or part), the method of identifying kinematic pairs automatically based on assembly constraints is presented. The information of kinematic pairs can be obtained through calculating the constraint degree of the assembly constraints. Secondly, the incidence matrix eliminating element method is proposed in order to search the information and establish the models of mechanisms automatically after finishing assembly simulation in virtual environment. Both methods have important significance for reducing the workload of pretreatment and promoting the level of automation of kinematics analysis. Finally, the method of kinematics analysis of mechanisms is presented. Based on Descartes coordinates, three types of kinematics equations are formed. The parameters, like displacement, velocity, and acceleration, can be obtained by solving these equations. All these data are important to analyze mechanical performance. All the methods are implemented and validated in the prototype system virtual assembly process planning(VAPP). The mechanism models are established and simulated in the VAPP system, and the result curves are shown accurately. The proposed kinematics analysis of mechanisms based on virtual assembly provides an effective method for simulating product assembly process automatically and analyzing mechanical performance after finishing assembly simulation. 展开更多
关键词 virtual assembly assembly constraint constraint degree eliminating element method kinematics equations kinematics analysis
下载PDF
Kinematic Analysis and Experimental Verification on the Locomotion of Gecko 被引量:7
9
作者 Woochul Nam TaeWon Seo +3 位作者 Byungwook Kim DongsuJeon Kyu-Jin Cho Jongwon Kim 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第3期246-254,共9页
This paper presents a kinematic analysis of the locomotion of a gecko,and experimental verification of the kinematic model.Kinematic analysis is important for parameter design,dynamic analysis,and optimization in biom... This paper presents a kinematic analysis of the locomotion of a gecko,and experimental verification of the kinematic model.Kinematic analysis is important for parameter design,dynamic analysis,and optimization in biomimetic robot research. The proposed kinematic analysis can simulate,without iteration,the locomotion of gecko satisfying the constraint conditions that maintain the position of the contacted feet on the surface.So the method has an advantage for analyzing the climbing motion of the quadruped mechanism in a real time application.The kinematic model of a gecko consists of four legs based on 7-degrees of freedom spherical-revolute-spherical joints and two revolute joints in the waist.The motion of the kinematic model is simulated based on measurement data of each joint.The motion of the kinematic model simulates the investigated real gecko's motion by using the experimental results.The analysis solves the forward kinematics by considering the model as a combination of closed and open serial mechanisms under the condition that maintains the contact positions of the attached feet on the ground. The motions of each joint are validated by comparing with the experimental results.In addition to the measured gait,three other gaits are simulated based on the kinematic model.The maximum strides of each gait are calculated by workspace analysis.The result can be used in biomimetic robot design and motion planning. 展开更多
关键词 kinematic analysis locomotlon of gecko lizard gait simulation various gaits workspace analysis
下载PDF
PERFORMANCE ANALYSIS AND KINEMATIC DESIGN OF PURE TRANSLATIONAL PARALLEL MECHANISM WITH VERTICAL GUIDE-WAYS 被引量:10
10
作者 LI Jianfeng WANG Xinhua +2 位作者 FEI Renyuan LIU Dezhong FAN Jinhong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第2期300-306,共7页
Performance analysis and kinematic design of the 3-PUU pure translational parallel mechanism with vertical guide-ways are investigated. Two novel performance indices, the critical slider stroke and the main section ar... Performance analysis and kinematic design of the 3-PUU pure translational parallel mechanism with vertical guide-ways are investigated. Two novel performance indices, the critical slider stroke and the main section area of workspace, are defined; The expressions of two other indices, i.e. the global dexterity and global force transfer ratio are revised based on the main section of workspace. Using these indices, performance changes versus the varieties of dimensional parameters of mechanism are investigated in detail and the graphic descriptions of change tendencies of the performance indices are illustrated. By means of these obtained graphic descriptions, kinematic parameters for the 3-PUU pure translational parallel mechanism with better characteristics can be directly acquired. 展开更多
关键词 3-PUU pure translational parallel mechanism Vertical guide-way Performance analysis kinematic design
下载PDF
Kinematic Analysis of Mobile Manipulator for Measurement and Maintenance in Dangerous Environment 被引量:4
11
作者 CUI Genqun LI Chunshu ZHANG Minglu School of Mechanical Engineering,Hebei University of Technology,Tianjin 300062,China, 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S3期983-988,共6页
This paper studies the kinematic modeling of a mobile manipulator that consists of 5-DOF manipulator and an autonomous wheeled mobile platform.Then an artificial neural network to realize the coordination motion betwe... This paper studies the kinematic modeling of a mobile manipulator that consists of 5-DOF manipulator and an autonomous wheeled mobile platform.Then an artificial neural network to realize the coordination motion between manipulator and mobile platform is developed.On the basis of the task specifications,the algorithm determines the appropriate control variables to respond to the well tracking trajectory.The control strategy employed for either subsystem is achieved by using a robust supervised controller.A learning paradigm is used to produce the required reference variables for an overall cooperative behavior of the sys- tem.Simulation results are presented to show the effectiveness of this approach. 展开更多
关键词 mobile MANIPULATOR kinematics analysis NONHOLONOMIC constraints COOPERATIVE behavior artificial NEURAL network
下载PDF
Kinematic and Dynamic Characteristics Analysis of Bennett's Linkage 被引量:5
12
作者 Changjian Zhi Sanmin Wang +1 位作者 Yuantao Sun Jianfeng Li 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第3期95-100,共6页
Bennett's linkage is a spatial fourlink linkage,and has an extensive application prospect in the deployable linkages.Its kinematic and dynamic characteristics analysis has a great significance in its synthesis and... Bennett's linkage is a spatial fourlink linkage,and has an extensive application prospect in the deployable linkages.Its kinematic and dynamic characteristics analysis has a great significance in its synthesis and application. According to the geometrical conditions of Bennett 's linkage,the motion equations are established,and the expressions of angular displacement,angular velocity and angular acceleration of the followers and the displacement,velocity and acceleration of mass center of link are shown. Based on Lagrange's equation,the multi-rigid-body dynamic model of Bennett's linkage is established. In order to solve the reaction forces and moments of joint,screw theory and reciprocal screw method are combined to establish the computing method.The number of equations and unknown reaction forces and moments of joint are equal through adding link deformation equations. The influence of the included angle of adjacent axes on Bennett 's linkage 's kinematic characteristics,the dynamic characteristics and the reaction forces and moments of joint are analyzed.Results show that the included angle of adjacent axes has a great effect on velocity,acceleration,the reaction forces and moments of Bennett's linkage. The change of reaction forces and moments of joint are apparent near the singularity configuration. 展开更多
关键词 bennett’s linkage kinematic characteristics dynamic characteristics Lagrange’s equations screw theory reciprocal screw method
下载PDF
FORWARD KINEMATICS ANALYSIS FOR A NOVEL 5-DOF PARALLEL MECHANISM USING TETRAHEDRON CONFIGURATIONS 被引量:3
13
作者 QI Ming QIE Yanhui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第6期1-4,共4页
Forward kinematics analysis of a novel 5-DOF parallel mechanism using tetrahedron configurations is presented. Such mechanism is suitable to many tasks requiring less than 6 DOFs. It consists of a movable platform con... Forward kinematics analysis of a novel 5-DOF parallel mechanism using tetrahedron configurations is presented. Such mechanism is suitable to many tasks requiring less than 6 DOFs. It consists of a movable platform connected to the base by five identical 6-DOF active limbs plus one active limb with its DOF being exactly the same as the specified DOF of the movable platform, which leads to its legs' topology 4-UPS/UPU. Based on the tetmhedron geometry, both closed-form solution with an extra sensor and numerical method using iterative algorithm are employed to obtain the forward kinematics solutions of the mechanism. Compared with the conventional methods, the proposed closed-form solution has the advantages in automatically avoiding unnecessary complex roots and getting a unique solution for the forward kinematics. Finally, an example shows that the proposed numerical algorithm is so effective that it enables a real-time forward kinematics solution to be achieved and the initial value can be chosen easily. 展开更多
关键词 Forward kinematics Numerical analysis Parallel mechanism
下载PDF
Pseudo-static/dynamic solutions of required reinforcement force for steep slopes using discretization-based kinematic analysis 被引量:2
14
作者 Changbing Qin Siau Chen Chian 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第2期289-299,共11页
This paper presents a procedure for assessing the reinforcement force of geosynthetics required for maintaining dynamic stability of a steep soil slope. Such a procedure is achieved with the use of the discretization ... This paper presents a procedure for assessing the reinforcement force of geosynthetics required for maintaining dynamic stability of a steep soil slope. Such a procedure is achieved with the use of the discretization technique and kinematic analysis of plasticity theory, i.e. discretization-based kinematic analysis. The discretization technique allows discretization of the analyzed slope into various components and generation of a kinematically admissible failure mechanism based on an associated flow rule.Accordingly, variations in soil properties including soil cohesion, internal friction angle and unit weight are accounted for with ease, while the conventional kinematic analysis fails to consider the changes in soil properties. The spatialetemporal effects of dynamic accelerations represented by primary and shear seismic waves are considered using the pseudo-dynamic approach. In the presence of geosynthetic reinforcement, tensile failure is discussed providing that the geosynthetics are installed with sufficient length. Equating the total rates of work done by external forces to the internal rates of work yields the upper bound solution of required reinforcement force, below which slopes fail. The reinforcement force is sought by optimizing the objective function with regard to independent variables, and presented in a normalized form. Pseudo-static analysis is a special case and hence readily transformed from pseudodynamic analysis. Comparisons of the pseudo-static/dynamic solutions calculated in this study are highlighted. Although the pseudo-static approach yields a conservative solution, its ability to give a reasonable result is substantiated for steep slopes. In order to provide a more meaningful solution to a stability analysis, the pseudo-dynamic approach is recommended due to considerations of spatial etemporal effect of earthquake input. 展开更多
关键词 GEOsYNTHETICs Pseudo-static/dynamic approach DIsCRETIZATION technique Discretization-based kinematic analysis Reinforced soil seismic stability
下载PDF
Configuration and Kinematics of a 3-DOF Generalized Spherical Parallel Mechanism for Ankle Rehabilitation
15
作者 Jianjun Zhang Shuai Yang +2 位作者 Chenglei Liu Xiaohui Wang Shijie Guo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期176-188,共13页
The kinematic equivalent model of an existing ankle-rehabilitation robot is inconsistent with the anatomical structure of the human ankle,which influences the rehabilitation effect.Therefore,this study equates the hum... The kinematic equivalent model of an existing ankle-rehabilitation robot is inconsistent with the anatomical structure of the human ankle,which influences the rehabilitation effect.Therefore,this study equates the human ankle to the UR model and proposes a novel three degrees of freedom(3-DOF)generalized spherical parallel mechanism for ankle rehabilitation.The parallel mechanism has two spherical centers corresponding to the rotation centers of tibiotalar and subtalar joints.Using screw theory,the mobility of the parallel mechanism,which meets the requirements of the human ankle,is analyzed.The inverse kinematics are presented,and singularities are identified based on the Jacobian matrix.The workspaces of the parallel mechanism are obtained through the search method and compared with the motion range of the human ankle,which shows that the parallel mechanism can meet the motion demand of ankle rehabilitation.Additionally,based on the motion-force transmissibility,the performance atlases are plotted in the parameter optimal design space,and the optimum parameter is obtained according to the demands of practical applications.The results show that the parallel mechanism can meet the motion requirements of ankle rehabilitation and has excellent kinematic performance in its rehabilitation range,which provides a theoretical basis for the prototype design and experimental verification. 展开更多
关键词 Ankle rehabilitation Parallel mechanism kinematic analysis Parameter optimization
下载PDF
Kinematic analysis of geosynthetics-reinforced steep slopes with curved sloping surfaces and under earthquake regions 被引量:3
16
作者 ZHOU Jian-feng QIN Chang-bing +1 位作者 PAN Qiu-jing WANG Cheng-yang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1755-1768,共14页
A procedure of kinematic analysis is presented in this study to assess the reinforcement force of geosynthetics required under seismic loadings, particularly for steep slopes which are hardly able to maintain its stab... A procedure of kinematic analysis is presented in this study to assess the reinforcement force of geosynthetics required under seismic loadings, particularly for steep slopes which are hardly able to maintain its stability. Note that curved sloping surfaces widely exist in natural slopes, but existing literatures were mainly focusing on a planar surface in theoretical derivation, due to complicated calculations. Moreover, the non-uniform soil properties cannot be accounted for in conventional upper bound analysis. Pseudo-dynamic approach is used to represent horizontal and vertical accelerations which vary with time and space. In an effort to resolve the above problems, the discretization technique is developed to generate a discretized failure mechanism, decomposing the whole failure block into various components. An elementary analysis permits calculations of rates of work done by external and internal forces. Finally, the upper bound solution of the required reinforcement force is formulated based on the work rate-based balance equation. A parametric study is carried out to give insights on the implication of influential factors on the performance of geosynthetic-reinforced steep slopes. 展开更多
关键词 EARTHQUAKEs pseudo-dynamic approach discretization-based kinematic analysis GEOsYNTHETICs steep slopes
下载PDF
Kinematic Analysis and Trajectory Planning of J-Groove Welding Robot 被引量:3
17
作者 陈昌亮 胡绳荪 +1 位作者 何东林 申俊琦 《Transactions of Tianjin University》 EI CAS 2012年第5期350-356,共7页
This paper introduces the complexity and particularity of tube-sphere intersection weld(J-groove weld) and establishes the mathematical model of tube-sphere intersection trajectory.Based on the characteristics of J-gr... This paper introduces the complexity and particularity of tube-sphere intersection weld(J-groove weld) and establishes the mathematical model of tube-sphere intersection trajectory.Based on the characteristics of J-groove welds,the computational process of welding gun orientation is first simplified.Then the kinematic algorithm of a welding robot is obtained according to screw theory and exponential product formula.Finally,Solidworks and SimMechanics are employed to simulate the kinematics of the welding robot,which proves the feasibility of the kinematic algorithm. 展开更多
关键词 tube-sphere intersection screw theory kinematic analysis trajectory planning
下载PDF
Novel heart valve leaflet designs with stiff polymeric materials and biomimetic kinematics
18
作者 Caroline C.Smid Georgios A.Pappas +2 位作者 Nikola Cesarovic Volkmar Falk Paolo Ermanni 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第6期1018-1034,共17页
Despite continuous efforts to improve the robustness of cardiac valve implants,neither bioprosthetic nor mechanical valves fulfill both hemodynamic and durability requirements.This study discussed novel flexible leafl... Despite continuous efforts to improve the robustness of cardiac valve implants,neither bioprosthetic nor mechanical valves fulfill both hemodynamic and durability requirements.This study discussed novel flexible leaflet designs,focusing on polymeric materials with proven hemocompatibility,such as polyether ether ketone,of much higher stiffness than native tissue,aiming at optimal valve implants.A biomimetic valve with a single-curvature belly-curve(B-C)was used as a reference for new design variants with a double-curvature B-C with varying radii.Soft(13.2 MPa)and stiff(2.4 GPa)leaflet materials and different thicknesses were studied using lean simulations and in vitro experiments under physiologic hemodynamic conditions.The performance was assessed using opening pressure(OP)and orifice area(OA).The latter was determined by a newly developed automatized image processing tool.Experimental trends are in agreement with simulations and demonstrated that a buckling-inspired double-curvature leaflet design significantly enhances the trileaflet valve opening behavior,which is particularly advantageous for stiffer leaflet materials.Compared to the reference,the best-performing variant showed an OP improvement of 47%and 44%based on simulations and experiments,respectively.In contrast,the achieved mean pressure differential was directly comparable to state-of-the-art bioprosthetic valves.The OA was slightly reduced for new variants but still in the satisfying range. 展开更多
关键词 Fully polymeric heart valve Parametric leaflet design Finite element analysis Leaflet kinematics In vitro testing
下载PDF
Kinematics analysis for obstacle-surmounting capability of a joint double-tracked robot 被引量:1
19
作者 宗成国 高学山 +2 位作者 于岩 郭文增 李玲 《Journal of Beijing Institute of Technology》 EI CAS 2016年第2期202-210,共9页
A double-tracked robot is designed from mechanical and control perspectives,which consists of two segments connected with a swing joint. As the angle between the two segments of the robot platform can be changed,the r... A double-tracked robot is designed from mechanical and control perspectives,which consists of two segments connected with a swing joint. As the angle between the two segments of the robot platform can be changed,the robot can move like a four-tracked robot on many terrains. The center of gravity( CG) kinematics model is established,which plays an important role in the process of traveling over obstacles and climbing up stairs. Using this model,the CG change situation and the maximal height of the climbable obstacle are obtained. Then the relationship between the robot pitch angle and the height of the obstacle is established. Finally,a reasonable system structure for the robot is designed and its kinematics analysis for obstacle-surmounting capability is conducted through experiments. 展开更多
关键词 track robot center of gravity (CG) kinematics analysis obstacle-surmounting capa-bility
下载PDF
Generalized Kinematics Analysis of Hybrid Mechanisms Based on Screw Theory and Lie Groups Lie Algebras 被引量:2
20
作者 Peng Sun Yanbiao Li +3 位作者 Ke Chen Wentao Zhu Qi Zhong Bo Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第5期171-184,共14页
Advanced mathematical tools are used to conduct research on the kinematics analysis of hybrid mechanisms,and the generalized analysis method and concise kinematics transfer matrix are obtained.In this study,first,acco... Advanced mathematical tools are used to conduct research on the kinematics analysis of hybrid mechanisms,and the generalized analysis method and concise kinematics transfer matrix are obtained.In this study,first,according to the kinematics analysis of serial mechanisms,the basic principles of Lie groups and Lie algebras are briefly explained in dealing with the spatial switching and differential operations of screw vectors.Then,based on the standard ideas of Lie operations,the method for kinematics analysis of parallel mechanisms is derived,and Jacobian matrix and Hessian matrix are formulated recursively and in a closed form.Then,according to the mapping relationship between the parallel joints and corresponding equivalent series joints,a forward kinematics analysis method and two inverse kinematics analysis methods of hybrid mechanisms are examined.A case study is performed to verify the calculated matrices wherein a humanoid hybrid robotic arm with a parallel-series-parallel configuration is considered as an example.The results of a simulation experiment indicate that the obtained formulas are exact and the proposed method for kinematics analysis of hybrid mechanisms is practically feasible. 展开更多
关键词 Hybrid mechanism screw theory Lie groups Lie algebras kinematics analysis Humanoid robotic arm
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部