期刊文献+
共找到316篇文章
< 1 2 16 >
每页显示 20 50 100
Comparison of kinetic models for isothermal CO_2 gasification of coal char–biomass char blended char 被引量:7
1
作者 Hai-bin Zuo Wei-wei Geng +1 位作者 Jian-liang Zhang Guang-wei Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第4期363-370,共8页
This study investigated the isothermal gasification reactivity of biomass char (BC) and coal char (CC) blended at mass ratios of 1:3, 1:1, and 3:1 via isothermal thermogravimelric analysis (TGA) at 900, 950, ... This study investigated the isothermal gasification reactivity of biomass char (BC) and coal char (CC) blended at mass ratios of 1:3, 1:1, and 3:1 via isothermal thermogravimelric analysis (TGA) at 900, 950, and 1000℃ under CO2. With an increase in BC blending ra- tio, there were an increase in gasification rate and a shortening of gasification time. This could be attributed to the high specific surface area of BC and the high uniformity of carbon structures in CC when compared to those in BC. Three representative gas-solid kinetic models, namely, the volumetric model (VM), grain model (GM), and random pore model (RPM), were applied to describe the reaction behavior of the char. Among them, the RPM model was considered the best model to describe the reactivity of the char gasification reaction. The activa- tion energy of BC and CC isothermal gasification as determined using the RPM model was found to be 126.7 kJ/mol and 210.2 kJ/mol, re- spectively. The activation energy was minimum (123.1 kJ/mol) for the BC blending ratio of 75%. Synergistic effect manifested at all mass ratios of the blended char, which increased with the gasification temperature. 展开更多
关键词 IRONMAKING coal char BIOMASS GASIFICATION kinetic models synergistic effect
下载PDF
Kinetic models of natural gas combustion in an internal combustion engine 被引量:2
2
作者 M. Mansha A. R Saleemi Badar M. Ghauri 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第1期6-14,共9页
In this study, combustion of methane was simulated using four kinetic models of methane in CHEMKIN 4.1.1 for 0-D closed internal combustion (IC) engine reactor. Two detailed (GRIMECH3.0 & UBC MECH2.0) and two red... In this study, combustion of methane was simulated using four kinetic models of methane in CHEMKIN 4.1.1 for 0-D closed internal combustion (IC) engine reactor. Two detailed (GRIMECH3.0 & UBC MECH2.0) and two reduced (One step & Four steps) models were examined for various IC engine designs. The detailed models (GRIMECH3.0, & UBC MECH2.0) and 4-step models successfully predicted the combustion while global model was unable to predict any combustion reaction. This study illustrated that the detailed model showed good concordances in the prediction of chamber pressure, temperature and major combustion species profiles. The detailed models also exhibited the capabilities to predict the pollutants formation in an IC engine while the reduced schemes showed failure in the prediction of pollutants emissions. Although, there are discrepancies among the profiles of four considered model, the detailed models (GRIMECH3.0 & UBC MECH2.0) produced the acceptable agreement in the species prediction and formation of pollutants. 展开更多
关键词 kinetic models detailed models reduced models COMBUSTION METHANE IC engine
下载PDF
Mass Transfer, Gas Holdup, and Kinetic Models of Batch and Continuous Fermentation in a Novel Rectangular Dynamic Membrane Airlift Bioreactor 被引量:1
3
作者 Ganlu Li Kequan Chen +5 位作者 Yanpeng Wei Jinlei Zeng Yue Yang Feng He Hui Li Pingkai Ouyang 《Engineering》 SCIE EI CAS 2022年第6期153-163,共11页
Compared with conventional cylinder airlift bioreactors(CCABs)that produce coarse bubbles,a novel rectangular dynamic membrane airlift bioreactor(RDMAB)developed in our lab produces fine bubbles to enhance the volumet... Compared with conventional cylinder airlift bioreactors(CCABs)that produce coarse bubbles,a novel rectangular dynamic membrane airlift bioreactor(RDMAB)developed in our lab produces fine bubbles to enhance the volumetric oxygen mass transfer coefficient(k_(L)a)and gas holdup,as well as improve the bioprocess in a bioreactor.In this study,we compared mass transfer,gas holdup,and batch and con-tinuous fermentation for RNA production in CCAB and RDMAB.In addition,unstructured kinetic models for microbial growth,substrate utilization,and RNA formation were established.In batch fermentation,biomass,RNA yield,and substrate utilization in the RDMAB were higher than those in the CCAB,which indicates that dynamic membrane aeration produced a high k_(L)a by fine bubbles;a higher k_(L)a is more bene-ficial to aerobic fermentation.The starting time of continuous fermentation in the RDMAB was 20 h ear-lier than that in the CCAB,which greatly improved the biological process.During continuous fermentation,maintaining the same dissolved oxygen level and a constant dilution rate,the biomass accumulation and RNA concentration in the RDMAB were 9.71% and 11.15% higher than those in the CCAB,respectively.Finally,the dilution rate of RDMAB was 16.7% higher than that of CCAB during con-tinuous fermentation while maintaining the same air aeration.In summary,RDMAB is more suitable for continuous fermentation processes.Developing new aeration and structural geometry in airlift bioreac-tors to enhance k_(L)a and gas holdup is becoming increasingly important to improve bioprocesses in a bioreactor. 展开更多
关键词 Airlift bioreactor Dynamic membrane kinetic model Batch fermentation Continuous fermentation
下载PDF
MACROSCOPIC KINETIC MODELS OF GLYCEROL BATCH FERMENTATION WITH OSMOTOLERANT YEAST
4
作者 Xie Dongming, Liu Dehua and Liu Tianzhong (State Key Lab of Biochemical Engineering,Institute of Chemical Metallurgy, Chinese Academy of Science, Beijing 100080 Department of Chemical Engineering, Tsinghua UniVersity Beijing 100084) 《化工学报》 EI CAS CSCD 北大核心 2000年第S1期248-251,共4页
Kinetics of glycerol production by fermentation with osmotolerant yeast Candida krusei was studied. Suppositions of cell negative effect on and glucose inhibition in specific growth rate and glycerol assumption for en... Kinetics of glycerol production by fermentation with osmotolerant yeast Candida krusei was studied. Suppositions of cell negative effect on and glucose inhibition in specific growth rate and glycerol assumption for energy maintenance were made. Based on the suppositions, a set of unstructured kinetic models including cell groWth, glucose consumption and glycerol accumulation rate was proposed. To avoid the significant decrease of produced glyccerol in the latter fermentation stage, the fermentation was suggested to be ended when the concentration ratio of glycerol to glucose is close to 7. 展开更多
关键词 kinetic model GLYCEROL FERMENTATION Osmotolerant yeast
下载PDF
Modern information technologies in construction of kinetic models for reactions of metal complex catalysis
5
作者 Jan Awrejcewicz Yuliya B.Lind +1 位作者 Irek M.Gubaidullin K.F.Koledina 《Theoretical & Applied Mechanics Letters》 CAS 2012年第4期23-26,共4页
For detailed study of complex chemical reactions mechanisms experiment is conducted for selected private reactions. This causes a problem of kinetic parameters getting--the same set of rate constants must describe bot... For detailed study of complex chemical reactions mechanisms experiment is conducted for selected private reactions. This causes a problem of kinetic parameters getting--the same set of rate constants must describe both public and private reaction stages, and also a general mechanism. In this paper, solution of this problem for a reaction of olefins hydroalumination is proposed. To optimize the computational process a methodology of parallelization is elaborated. On the base of parallel computations, a kinetic model for the reaction assigned is constructed, and on its base, the physical and chemical conclusions about reaction mechanism are done. 展开更多
关键词 metal complex catalysis inverse problem kinetic model induction period parallel computations
下载PDF
Modeling the Drying Kinetics of Pigeon Pea [Cajanus cajan (L.) Millspaugh]
6
作者 Nadia Pamela Gladys Pambou-Tobi Arnaud Wenceslas Geoffroy Tamba Sompila +3 位作者 Michel Elenga Reyes Herdenn Gampoula Gloire Horiane Louya Banzouzi Sylvia Petronille Ntsossani 《Open Journal of Applied Sciences》 2024年第6期1425-1436,共12页
We set out to model the oven-drying kinetics of a legume known as pigeon pea, harvested in the Bouenza department in the south-west of the Republic of Congo. The drying kinetics of pigeon peas was carried out in an ov... We set out to model the oven-drying kinetics of a legume known as pigeon pea, harvested in the Bouenza department in the south-west of the Republic of Congo. The drying kinetics of pigeon peas was carried out in an oven under experimental conditions using temperatures of: 50°C, 60°C and 70°C. Seven mathematical models were used to describe pigeon pea drying. During drying, water loss was faster and shorter at 70°C [10.446 g/25 g wet weight (wwb) for 320 min (5.3 h)] compared to 50°C [10.996 g/25 g wet weight (wwb) for 520 min (8.6 h)] and 60°C [10.616 g/25 g wet weight (wwb) for 420 min (7.0 h)] where it was slower and longer. With regard to modeling, and based on the principle of choosing the right model focusing on the high value of R2 and low values of χ2 and RMSE, two models were selected, the Midili model for temperatures of 50°C and 60°C and the Henderson and Pabis model modified for temperature of 70°C showed better results. The R2, χ2 and RMSE values calculated for pigeon pea are 0.99985, 3.93404E-5 and 0.00627;0.9997, 9.245E-5 and 0.00962;0.99996, 1.56332E-5 and 0.00395 respectively at 50°C, 60°C and 70°C. 展开更多
关键词 Cajanus cajan LEGUME kinetic models DRYING
下载PDF
Precision of Radiation Chemistry Networks: Playing Jenga with Kinetic Models for Liquid-Phase Electron Microscopy
7
作者 Birk Fritsch Paolo Malgaretti +2 位作者 Jens Harting Karl J.J.Mayrhofer Andreas Hutzler 《Precision Chemistry》 2023年第10期592-601,共10页
Liquid-phase transmission electron microscopy(LP-TEM)is a powerful tool to gain unique insights into dynamics at the nanoscale.The electron probe,however,can induce significant beam effects that often alter observed p... Liquid-phase transmission electron microscopy(LP-TEM)is a powerful tool to gain unique insights into dynamics at the nanoscale.The electron probe,however,can induce significant beam effects that often alter observed phenomena such as radiolysis of the aqueous phase.The magnitude of beam-induced radiolysis can be assessed by means of radiation chemistry simulations potentially enabling quantitative application of LP-TEM.Unfortunately,the computational cost of these simulations scales with the amount of reactants regarded.To minimize the computational cost,while maintaining accurate predictions,we optimize the parameter space for the solution chemistry of aqueous systems in general and for diluted HAuCl4 solutions in particular.Our results indicate that sparsened kinetic models can accurately describe steady-state formation during LP-TEM and provide a handy prerequisite for efficient multidimensional modeling.We emphasize that the demonstrated workflow can be easily generalized to any kinetic model involving multiple reaction pathways. 展开更多
关键词 Electron beam effects GOLD RADIOLYSIS kinetic modeling simulation efficiency liquid cell transmission electron microscopy
原文传递
Role of iron ore in enhancing gasification of iron coke:Structural evolution,influence mechanism and kinetic analysis
8
作者 Jie Wang Wei Wang +4 位作者 Xuheng Chen Junfang Bao Qiuyue Hao Heng Zheng Runsheng Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期58-69,共12页
The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the micro... The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%. 展开更多
关键词 low-carbon ironmaking iron coke GASIFICATION structural evolution kinetic model
下载PDF
Experiments and kinetic modeling of the sorbitol dehydration to isosorbide catalyzed by sulfuric acid under conditions of non-constant volume
9
作者 Dechang Cheng Zhihong Ma +4 位作者 Ziyang Liu Xiaohui Liu Tao Liu Weizhen Sun Ling Zhao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期281-289,共9页
Isosorbide is a novel bio-based material derived as a secondary dehydration product of sorbitol.This work focuses on the kinetics of sulfuric acid-catalyzed dehydration of sorbitol under conditions of nonconstant volu... Isosorbide is a novel bio-based material derived as a secondary dehydration product of sorbitol.This work focuses on the kinetics of sulfuric acid-catalyzed dehydration of sorbitol under conditions of nonconstant volume.Herein,the effects of stirring rate,catalyst dosage,reaction temperature,and reaction time on the dehydration reaction of sorbitol were investigated.The yield of isosorbide up to 77.13%was obtained after 1.5 h of reaction time under conditions of 2 kPa,1.0%(mass)catalyst dosage,and 413.15 K.Based on the sorbitol dehydration reaction mechanism and a simplified reaction network,a kinetic model was developed in this work.A good agreement was accomplished between kinetic modeling and experiments between 393.15 and 423.15 K.The fitting results indicate that side reactions with higher activation energies are more affected by reaction temperatures,and the main side reaction that influences the selectivity of isosorbide is the oligomerization reaction among the primary dehydration products of sorbitol.The model fitting of the catalyst amounts effect shows that the effective concentration of sulfuric acid would be reduced with the increase of dosage due to the molecular agglomeration effect.Hopefully,the kinetic experiments and modeling results obtained in this work will be helpful to the design and optimization of the industrial sorbitol dehydration process. 展开更多
关键词 ISOSORBIDE Sorbitol dehydration Non-constant volume kinetic modeling
下载PDF
Kinetics and mechanisms of non-radically and radically induced degradation of bisphenol A in a peroxymonosulfate-chloride system
10
作者 Zhao Song Yu Zhang +3 位作者 Yanhu Yang Yidi Chen Nanqi Ren Xiaoguang Duan 《Environmental Science and Ecotechnology》 SCIE 2024年第6期191-197,共7页
Bisphenol A,a hazardous endocrine disruptor,poses significant environmental and human health threats,demanding efficient removal approaches.Traditional biological methods struggle to treat BPA wastewater with high chl... Bisphenol A,a hazardous endocrine disruptor,poses significant environmental and human health threats,demanding efficient removal approaches.Traditional biological methods struggle to treat BPA wastewater with high chloride(Cl^(-))levels due to the toxicity of high Cl^(-)to microorganisms.While persulfate-based advanced oxidation processes(PS-AOPs)have shown promise in removing BPA from high Cl^(-)wastewater,their widespread application is always limited by the high energy and chemical usage costs.Here we show that peroxymonosulfate(PMS)degrades BPA in situ under high Cl^(-)concentrations.BPA was completely removed in 30 min with 0.3 mM PMS and 60 mM Cl^(-).Non-radical reactive species,notably free chlorine species,including dissolved Cl2(l),HClO,and ClO−dominate the removal of BPA at temperatures ranging from 15 to 60°C.Besides,free radicals,including•OH and Cl_(2)^(•−),contribute minimally to BPA removal at 60°C.Based on the elementary kinetic models,the production rate constant of Cl2(l)(32.5 M^(−1) s^(−1))is much higher than HClO(6.5×10^(−4) M^(−1) s^(−1)),and its degradation rate with BPA(2×10^(7) M^(−1) s^(−1))is also much faster than HClO(18 M^(−1) s^(−1)).Furthermore,the degradation of BPA by Cl2(l)and HClO were enlarged by 10-and 18-fold at 60°C compared to room temperature,suggesting waste heat utilization can enhance treatment performance.Overall,this research provides valuable insights into the effectiveness of direct PMS introduction for removing organic micropollutants from high Cl^(-)wastewater.It further underscores the critical kinetics and mechanisms within the PMS/Cl⁻system,presenting a cost-effective and environmentally sustainable alternative for wastewater treatment. 展开更多
关键词 BPA removal Saline wastewater PEROXYMONOSULFATE Free chlorine kinetic model
原文传递
Multi-lump Kinetic Parameter Estimation and Simulation of Trickle-bed Reactor for Ultra-deep Hydrodesulfurization of Diesel
11
作者 Huang Zhen Zhang Xun +4 位作者 Qiao Aijun Xue Nan Liu Kaixiang Xu Song Wang He 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第3期147-157,共11页
A three-lumping Langmuir-Hinshelwood kinetic model was established based on the structures and reactivities of sulfur compounds.This model described the ultra-deep hydrodesulfurization(UDHDS)performance of diesel,redu... A three-lumping Langmuir-Hinshelwood kinetic model was established based on the structures and reactivities of sulfur compounds.This model described the ultra-deep hydrodesulfurization(UDHDS)performance of diesel,reducing sulfur content from 10000μg/g to less than 10μg/g,with experimental and predicted data showing a discrepancy of less than 10%.The diesel UDHDS reaction was simulated by combining the mass transfer,reaction kinetics model,and physical properties of diesel.The results showed how the concentrations of H2S,hydrogen,and sulfur in the gas,liquid,and solid phases varied along the reactor length.Moreover,the study discussed the effects of each process parameter and impurity concentrations(H2S,basic nitrogen and,non-basic nitrogen)on diesel UDHDS. 展开更多
关键词 DIESEL TBR ultra-deep HDS kinetic model simulation
下载PDF
Investigating the first-order flotation kinetics models for Sarcheshmeh copper sulfide ore 被引量:12
12
作者 Asghar Azizi Ahmad Hassanzadeh Behnam Fadaei 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第5期849-854,共6页
This study was performed in two phases of work.In the first stage,four conventional first-order flotation kinetics models were fitted to the measured recoveries data and the best model were selected.In the second stag... This study was performed in two phases of work.In the first stage,four conventional first-order flotation kinetics models were fitted to the measured recoveries data and the best model were selected.In the second stage,influence of pH,solid concentration,water chemistry and the amount of collector dosage were investigated on kinetics parameters including flotation rate constant and ultimate recovery.The results indicated that that perfectly mixed reactor model and Kelsall model gave the best and the weakest fit to the experimental data,respectively.It was observed that flotation rate constant and ultimate recovery were strongly affected by chemical factors investigated especially water quality.The flotation rate constant decreased with increasing the solids content,while ultimate recovery increased to certain value and thereafter reduced.It was also found that the most values of flotation rate constant and ultimate recovery obtained in dosage of collector are 30 and 40 g/t,respectively. 展开更多
关键词 Copper ore FLOTATION kinetics model Rate constant Ultimate recovery
下载PDF
Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon 被引量:5
13
作者 Junxiong LIN Lan WANG 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2009年第3期320-324,共5页
The best-fit equations of linear and non-linear forms of the two widely used kinetic models,namely pseudo-first-order and pseudo-second-order equations,were compared in this study.The experimental kinetics of methylen... The best-fit equations of linear and non-linear forms of the two widely used kinetic models,namely pseudo-first-order and pseudo-second-order equations,were compared in this study.The experimental kinetics of methylene blue adsorption on activated carbon was used for this research.Both the correlation coefficient(R2)and the normalized standard deviationΔq(%)were employed as error analysis methods to determine the best-fitting equations.The results show that the non-linear forms of pseudo-first-order and pseudo-second-order models were more suitable than the linear forms for fitting the experimental data.The experimental kinetics may have been distorted by linearization of the linear kinetic equations,and thus,the non-linear forms of kinetic equations should be primarily used to obtain the adsorption parameters.In addition,theΔq(%)method for error analysis may be better to determine the best-fitting model in this case. 展开更多
关键词 ADSORPTION pseudo-first order pseudo-second order kinetic model linear method non-linear method
原文传递
Kinetic models of peroxidase activity in potato leaves infected with late blight based on hyperspectral data 被引量:3
14
作者 Qinyu Li Yaohua Hu 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2019年第2期160-165,共6页
Potato late blight,which is caused by Phytophthorainfestans(Mont.)de Bary,is a worldwide devastating disease for potato.It decreased yields of potato and caused unpredictable losses all over the world.Various simple s... Potato late blight,which is caused by Phytophthorainfestans(Mont.)de Bary,is a worldwide devastating disease for potato.It decreased yields of potato and caused unpredictable losses all over the world.Various simple statistical methods and forecasting models have been developed to predict and manage potato late blight.Meanwhile,there is a rising need to develop prediction models reflecting peroxidase(POD)activity,which is an important health index that varies with infection and correlated with stress resistance in plants.Thus,the aim of this research was to develop kinetic models to predict POD activity.Infection-induced changes in potato leaves stored in an artificial climate chest at 25°C were analyzed using hyperspectroscopy.Four prediction models were developed by using linear partial least squares(PLS)and nonlinear support vector machine(SVM)methods based on the full spectrum and effective wavelengths.The effective wavelengths were selected by the successive projection algorithm(SPA).In this study,the prediction model developed by means of SPA-SVM method obtained the best performance,with a Rp(correlation coefficient of prediction)value of 0.923 and a RMSEp(root mean square error of prediction)value of 24.326.Five-order kinetics models according to the prediction model were developed,and late blight disease can be predicted using this model.This study provided a theoretical basis for the prediction of latencies of late blight. 展开更多
关键词 POD(peroxidase)activity kinetic model potato leaves late blight hyperspectral data latency prediction
原文传递
In vitro evaluation of transdermal permeation effects of Fu’s cupping therapy via six diffusion kinetics models 被引量:1
15
作者 Wei-Jie Xie Yu-Mei Wu +4 位作者 Shuai-Shuai Chen Jian Xu Fang-Fang Yang Yong-Ping Zhang Xiao-Bo Sun 《Traditional Medicine Research》 2019年第1期42-53,共12页
In this study,six kinetics models of indomethacin hydrophilic gel patch transdermal in vitro release was established,including zero-level,first-order,Higuchi-level,Ritger-Peppas,Weibull and Hixcon-Crowell dynamic equa... In this study,six kinetics models of indomethacin hydrophilic gel patch transdermal in vitro release was established,including zero-level,first-order,Higuchi-level,Ritger-Peppas,Weibull and Hixcon-Crowell dynamic equations.The chemical permeation enhancers,including 3%and 5%Azone,and iontophoresis were used as the control.Transdermal diffusion tests were performed in vitro and indomethacin was quantified by high performance liquid chromatography system.The transdermal parameter of the Higuchi and Weibull dynamic equations,indicated that Fu’s cupping therapy(FCT)could significantly improve Higuchi and Weibull kinetic parameters in vitro transdermal,increased transdermal rate and permeability coefficient,reduced lagging time.Additionally,statistical analysis speculated the skin barrier function could be restored after 46 h treatment.Hence,as a new physical transdermal drug delivery technology,transdermal permeation effects produced by FCT are obvious,which has the characteristics of traditional Chinese medicine and has important clinical application value. 展开更多
关键词 Indomethacin Diffusion kinetics models Fu’s cupping therapy Transdermal permeation technology Chemical penetration enhancers Traditional Chinese medicine
下载PDF
Bioregeneration of spent activated carbon:Review of key factors and recent mathematical models of kinetics
16
作者 Kwok-Yii Leong Siew-Leng Loo +3 位作者 Mohammed J.K.Bashir Wen-Da Oh Pasupuleti Visweswara Rao Jun-Wei Lim 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第5期893-902,共10页
The disposal of spent activated carbon(AC) will inevitably create secondary pollution. In overcoming this problem, the spent AC can be regenerated by means of biological approach. Bioregeneration is the phenomenon in ... The disposal of spent activated carbon(AC) will inevitably create secondary pollution. In overcoming this problem, the spent AC can be regenerated by means of biological approach. Bioregeneration is the phenomenon in which through the action of microorganisms, the adsorbed pollutants on the surface of the AC will be biodegraded and this enables further adsorption of pollutants to occur with time elapse. This review provides the challenges and perspectives for effective bioregeneration to occur in biological activated carbon(BAC)column. Owing to very few reported works on the bioregeneration rate in BAC column, emphasis is put forward on the recently developed models of bioregeneration kinetic in batch system. All in all, providing potential solutions in increasing the lifespan of AC and the enhancement of bioregeneration rate will definitely overcome the bottlenecks in spent AC bioregeneration. 展开更多
关键词 BIOREGENERATION Spent activated carbon Modeling of bioregeneration kinetic Concentration gradient EXOENZYME
下载PDF
Effects of heavy metal ions Cu^(2+)/Pb^(2+)/Zn^(2+)on kinetic rate constants of struvite crystallization
17
作者 Guangyuan Chen Tong Zhou +5 位作者 Meng Zhang Zhongxiang Ding Zhikun Zhou Yuanhui Ji Haiying Tang Changsong Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第5期10-16,共7页
Struvite(MAP)crystallization technology is widely used to treat ammonia nitrogen in waste effluents of its simple operation and good removal efficiency.However,the presence of heavy metal ions in the waste effluents c... Struvite(MAP)crystallization technology is widely used to treat ammonia nitrogen in waste effluents of its simple operation and good removal efficiency.However,the presence of heavy metal ions in the waste effluents causes problems such as slow crystallization rate and small crystal size,limiting the recovery rate and economic value of the MAP.The present study was conducted to investigate the effects of concentrations of three heavy metal ions(Cu^(2+),Zn^(2+),and Pb^(2+))on the crystal morphology,crystal size,average growth rate,and crystallization kinetics of MAP.A relationship was established between the kinetic rate constant Ktcalculated by the chemical gradient model and the concentrations of heavy metal ions.The results showed that low concentrations of heavy metal ions in the solution created pits on the MAP surface,and high level of heavy metal ions generated flocs on the MAP surface,which were composed of metal hydroxides,thus inhibiting crystal growth.The crystal size,average growth rate,MAP crystallization rate,and kinetic rate constant Ktdecreased with the increase in heavy metal ion concentration.Moreover,the Ktdemonstrated a linear relationship with the heavy metal concentration ln(C/C~*),which provided a reference for the optimization of the MAP crystallization process in the presence of heavy metal ions. 展开更多
关键词 STRUVITE CRYSTALLIZATION Heavy metal ions kineticS kinetic modeling kinetic rate constant
下载PDF
A comparative single-pulse shock tube experiment and kinetic modeling study on pyrolysis of cyclohexane,methylcyclohexane and ethylcyclohexane
18
作者 Jin-hu Liang Shu-tong Cao +5 位作者 Fei Li Xiao-liang Li Rui-ning He Xin Bai Quan-De Wang Yang Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期137-148,共12页
The pyrolysis of cyclohexane,methylcyclohexane,and ethylcyclohexane have been studied behind reflected shock waves at pressures of 5 and10 bar and at temperatures of 930-1550 K for 0.05%fuel diluted by Argon.A single-... The pyrolysis of cyclohexane,methylcyclohexane,and ethylcyclohexane have been studied behind reflected shock waves at pressures of 5 and10 bar and at temperatures of 930-1550 K for 0.05%fuel diluted by Argon.A single-pulse shock tube(SPST)is used to perform the pyrolysis experiments at reaction times varying from 1.65 to 1.74 ms.Major products are obtained and quantified using gas chromatography analysis.A flame ionization detector and a thermal conductivity detector are used for species identification and quantification.Kinetic modeling has been performed using several detailed and lumped chemical kinetic mechanisms.Differences in modeling results among the kinetic models are described.Reaction path analysis and sensitivity analysis are performed to determine the important reactions controlling fuel pyrolysis and their influence on the predicted concentrations of reactant and product species profiles.The present work provides new fundamental knowledge in understating pyrolysis characteristics of cyclohexane compounds and additional data set for detailed kinetic mechanism development. 展开更多
关键词 CYCLOHEXANE Alkylated cyclohexane Single-pulse shock tube PYROLYSIS kinetic modeling
下载PDF
Extend ethylene aromatization single-event kinetic modeling with physical and chemical descriptor based on ZSM-5 catalyst
19
作者 Jia-Rong Xie Fang Jin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3841-3853,共13页
The ethylene aromatization is critical for the methanol to aromatics and light alkane dehydroaromatization process.The single-event microkinetic(SEMK)model combining the linear free energy theory and solid acid distri... The ethylene aromatization is critical for the methanol to aromatics and light alkane dehydroaromatization process.The single-event microkinetic(SEMK)model combining the linear free energy theory and solid acid distribution concept were established and extend for the ethylene aromatization process,which can reduce the kinetic parameters and simplify the reaction network by comparison with the SEMK model including subtype elementary steps based on the type of carbenium ions.Further introducing deactivation parametersφinto the model and applying the linear free energy model to the deactivation experimental data,the obtained deactivation parametersφindicate that the carbon deposition precursors have the greatest impact on reducing the reaction rate of single-molecular reactions and the smallest impact on the hydrogen transfer reaction.Meanwhile,according to the change of reaction enthalpy,effect of carbenium ion structure on methylation,ethylation,cyclization and endo-βscission was investigated by introducing linear free energy concept into the SEMK model.The effect of different acid strengths on elementary steps was investigated based on the acid strength distribution model,it was found that the methylation and oligomerization reactions,the ali-βscission reaction,endo-βscission reaction and the cyclization reaction were more sensitive to strong acidity sites.The physisorption and chemisorption heat are separated from the protonation heat in the linear free energy kinetic model and the acid strength distribution kinetic model,and the absolute values of the obtained physisorption and chemisorption heat increase with the carbon number of carbenium ions.Furthermore,the parameters of the acid strength distribution kinetic model were applied to propane dehydroaromatization on H-ZSM-5 and the ethane dehydroaromatization on Zn/ZSM-5 to confirm the independence of parameters in the SEMK model with the similar reaction network. 展开更多
关键词 kinetic model Ethylene aromatization Acid strength distribution Linear free energy theory
下载PDF
Hot-deformation kinetics analysis and extrusion parameter optimization of a dilute rare-earth free magnesium alloy
20
作者 Qinghang Wang Haowei Zhai +5 位作者 Zhaoyang Jin Junjie He Qin Yang Wenjun Liu Yulong Li Daolun Chen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第9期3302-3322,共21页
The fundamental research on thermo-mechanical conditions provides an experimental basis for high-performance Mg-Al-Ca-Mn alloys.However, there is a lack of systematical investigation for this series alloys on the hot-... The fundamental research on thermo-mechanical conditions provides an experimental basis for high-performance Mg-Al-Ca-Mn alloys.However, there is a lack of systematical investigation for this series alloys on the hot-deformation kinetics and extrusion parameter optimization. Here, the flow behavior, constitutive model, dynamic recrystallization(DRX) kinetic model and processing map of a dilute rare-earth free Mg-1.3Al-0.4Ca-0.4Mn(AXM100, wt.%) alloy were studied under different hot-compressive conditions. In addition, the extrusion parameter optimization of this alloy was performed based on the hot-processing map. The results showed that the conventional Arrhenius-type strain-related constitutive model only worked well for the flow curves at high temperatures and low strain rates. In comparison, using the machine learning assisted model(support vector regression, SVR) could effectively improve the accuracy between the predicted and experimental values. The DRX kinetic model was established, and a typical necklace-shaped structure preferentially occurred at the original grain boundaries and the second phases. The DRX nucleation weakened the texture intensity, and the further growth caused the more scattered basal texture. The hot-processing maps at different strains were also measured and the optimal hot-processing range could be confirmed at the deformation temperatures of 600~723 K and the strain rates of 0.018~0.563 s^(-1). Based on the optimum hot-processing range, a suitable extrusion parameter was considered as 603 K and 0.1 mm/s and the as-extruded alloy in this parameter exhibited a good strength-ductility synergy(yield strength of ~ 232.1 MPa, ultimate strength of ~ 278.2 MPa and elongation-to-failure of ~ 20.1%). Finally, the strengthening-plasticizing mechanisms and the relationships between the DRXed grain size, yield strength and extrusion parameters were analyzed. 展开更多
关键词 Mg-Al-Ca-Mn alloy Constitutive model Dynamic recrystallization kinetic model Extrusion parameter optimization Strengthening-plasticizing mechanisms
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部