期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
A THEORETICAL STUDY OF THE THERMODYNAMIC AND KINETIC PROPERTIES FOR THE REACTION OF FORMYL CYANIDE DECOMPOSITION
1
作者 Fens Ling LIU Shi Guang NING Bao Ji CHEN Ming Li SHI Dept.of Chem.,Shandong Normal University Jinan 250014 《Chinese Chemical Letters》 SCIE CAS CSCD 1993年第9期805-808,共4页
We compute the thermodynamic and the kinetic properties for the reaction: HCOCN→HCH+CO using the statistical theory and the transition-state theory.The equi- librium constants and the rate coefficients of this reacti... We compute the thermodynamic and the kinetic properties for the reaction: HCOCN→HCH+CO using the statistical theory and the transition-state theory.The equi- librium constants and the rate coefficients of this reaction are also reported here,and the half lives of formyl cyanide at different temperatures are first estimated in this work. 展开更多
关键词 CO exp A THEORETICAL STUDY OF THE THERMODYNAMIC AND kinetic properties FOR THE REACTION OF FORMYL CYANIDE DECOMPOSITION MPZ
下载PDF
Investigation of Physical Properties of Nano Crude Petroleum: Increasing Oil Flow Rate in Reservoirs
2
作者 Haniyeh Zare Mehdi Bosaghzadeh Frshad Farahbod 《Advances in Nanoparticles》 CAS 2023年第1期1-10,共10页
The zinc oxide nano-particles have been used in this research. In this work, zinc oxide nanoparticles have been added to light and heavy crude oil. In this research, thermoelectric and physical properties of light and... The zinc oxide nano-particles have been used in this research. In this work, zinc oxide nanoparticles have been added to light and heavy crude oil. In this research, thermoelectric and physical properties of light and heavy crude petroleum have been measured, experimentally. In addition, dimensionless groups in hydrodynamics and heat transfer calculations are presented. This research illustrates that heat capacity of light and heavy crude petroleum varies from 4256 J/kg·°C to 4457 J/kg·°C and 4476 J/kg·°C to 5002 J/kg·°C, respectively. Moreover, heat capacity of light and heavy nano-crude petroleum is changing from about 4285 J/kg·°C to 4496 J/kg·°C and 4494 J/kg·°C to 5021 J/kg·°C, respectively. 展开更多
关键词 Crude Petroleum THERMOELECTRIC kinetic properties Nano-Metals Dimensional Numbers
下载PDF
Synthesis Characterization Non-isothermal Kinetics of the Thermal Decomposition and Redox Properties Derived from Copper(Ⅱ) Binuclear Coordination Compound of 1,4-Bis-(1'-Phenyl-3'-Methyl-5'-Pyrazolone-4')-1,4-Butanedione
3
作者 Cun SHAN Dian Zen JIA Xi XIA(Department of Chemistry,, Xinjiang University, Urumqi,830046). 《Chinese Chemical Letters》 SCIE CAS CSCD 1997年第5期455-458,共4页
The paper reports the synthetic procedure and character of Copper(II) binuclearcoordination compound of 1,4-bis-(1'-phenyl-3'-methyl-5'-pyrazolone Thenon-isothermal kinetics of thermal decomposition of the... The paper reports the synthetic procedure and character of Copper(II) binuclearcoordination compound of 1,4-bis-(1'-phenyl-3'-methyl-5'-pyrazolone Thenon-isothermal kinetics of thermal decomposition of the complex has been stUdied from the TG-DTGcurves by means of the Achar et al. and Coats-Redfern methods,the most probab1e kinetic equation canbe expressed as dofdtrAe -E / RT * l /(2Q).The corresponding kinetic compensation effect expressions arefound to be lnuA=0. 1794E+0. 1689.The non-isothermal thermal decomposition process of the complex isone-dimensional diffusion.But electrochemical studies of the complex(Cu2L'2)from cyclic voltamrnetriccurves by means of powder microelectrodes technique'',shows one two-electron irreversible process. 展开更多
关键词 Methyl-5 Phenyl-3 Pyrazolone-4 Synthesis Characterization Non-isothermal kinetics of the Thermal Decomposition and Redox properties Derived from Copper Binuclear Coordination Compound of 1 4-Bis
下载PDF
Magnetization dynamics of mixed Co–Au chains on Cu(110) substrate:Combined ab initio and kinetic Monte Carlo study
4
作者 K.M.Tsysar S.V.Kolesnikov A.M.Saletsky 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期474-478,共5页
We present an investigation of the one-dimensional ferromagnetism in Au–Co nanowires deposited on the Cu(110)surface. By using the density functional theory, the influence of the nonmagnetic copper substrate Cu(11... We present an investigation of the one-dimensional ferromagnetism in Au–Co nanowires deposited on the Cu(110)surface. By using the density functional theory, the influence of the nonmagnetic copper substrate Cu(110) on the magnetic properties of the bimetallic Au–Co nanowires is studied. The results show the emergence of magnetic anisotropy in the supported Au–Co nanowires. The magnetic anisotropy energy has the same order of magnitude as the exchange interaction energy between Co atoms in the wire. Our electronic structure calculation reveals the emergence of new hybridized bands between Au and Co atoms and surface Cu atoms. The Curie temperature of the Au–Co wires is calculated by means of kinetic Monte Carlo simulation. The strong size effect of the Curie temperature is demonstrated. 展开更多
关键词 magnetic properties nanowires density functional theory kinetic Monte Carlo simulation
下载PDF
Apparent activation energy of mineral in open pit mine based upon the evolution of active functional groups
5
作者 Shipng Lu Jingyu Zhao +2 位作者 Jiajia Song Jiaming Chang Chi‑Min Shu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期77-91,共15页
This study aimed to investigate the mechanism of mineral spontaneous combustion in an open pit. On the study of coal and mineral mixture in open pit mines, as well as through the specifc surface area and Search Engine... This study aimed to investigate the mechanism of mineral spontaneous combustion in an open pit. On the study of coal and mineral mixture in open pit mines, as well as through the specifc surface area and Search Engine Marketing (SEM) experiments, the specifc surface area and aperture characteristics of distribution of open pit coal sample and pit mineral mixture samples were analyzed. Thermal analysis experiments were used to divide the oxidation process was divided into three stages, and the thermal behavior characteristics of experimental samples were characterized. On the basis of the stage division, we explored the transfer law of the key active functional groups of the experimental samples. The apparent activation energy calculation of the key active groups, performed by combining the Achar diferential method with the Coats–Redfern integral method, microstructural and oxidation kinetic properties were revealed. The resulted showed that the mixed sample had high ash, the fxed carbon content was reduced, the specifc surface area was far lower than the raw coal, the large aperture distribution was slightly higher than the medium hole, the micropore was exceptionally low, the gas adsorption capacity was weaker than the raw coal, the pit coal sample had the exceedingly more active functional groups, easy to react with oxygen, more likely to occur naturally, and its harm was relatively large. The mixed sample contained the highest C–O–C functional group absorbance. The functional groups were mainly infuenced by the self-OH content, alkyl side chain, and fatty hydrocarbon in the sample. The main functional groups of the four-like mixture had the highest apparent activation energy, and the two reactions were higher in the low-temperature oxidation phase. 展开更多
关键词 Specifc surface area Aperture distribution characteristics Thermal behavior characteristics Oxidation kinetic properties Gas adsorption capacity
下载PDF
Enhancing (de)hydrogenation kinetics properties of the Mg/MgH_(2) system by adding ANi_(5)(A=Ce,Nd,Pr,Sm,and Y) alloys via ball milling 被引量:3
6
作者 Wenfang Liao Wenbin Jiang +3 位作者 Xu-Sheng Yang Hui Wang Liuzhang Ouyang Min Zhu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2021年第8期1010-1016,共7页
Magnesium(Mg)-based alloys have already been widely studied as the hydrogen storage materials because of their high reversible hydrogen storage capacity,low cost,light weight,etc.However,the poor de/hydrogenation kine... Magnesium(Mg)-based alloys have already been widely studied as the hydrogen storage materials because of their high reversible hydrogen storage capacity,low cost,light weight,etc.However,the poor de/hydrogenation kinetic properties dramatically hinder the practical applications.In this work,the MgH_(2)-ANi_(5)(A=Ce,Nd,Pr,Sm,and Y) composites were prepared by a high-energy ball milling method.which can effectively refine the particle size thus improving the kinetic properties.Experimental results reveal that the MgH_(2)-ANi_(5) composites mainly consist of Mg_(2)NiH_(4),MgH_(2) and rare earth(RE) hydride,which will be dehydrogenated to form Mg_(2)Ni,Mg and stable RE hydride reversibly.Accordingly,the asmilled MgH_(2)-ANi_(5)(A=Ce,Nd,Pr,Sm,and Y) composites with various A-elements can respectively contribute to a reversible hydrogen storage capacity of 6.16 wt%,5.7 wt%,6.21 wt%,6.38 wt%,and 6.5 wt%at a temperature of 300℃,and show much better kinetic properties in comparison to the pure MgH_(2) without any additive.In-situ formed Mg_(2) Ni and stable RE hydride(such as CeH_(2.73) and YH_(2)) might act as effective catalysts to significantly improve the hydrogen storage properties of MgH_(2).The present work provides a guideline on improving the kinetic properties of the Mg-based hydrogen storage alloys. 展开更多
关键词 Mg-based hydrogen storage alloy kinetic properties ANi_(5) ADDITIVES Rare earths
原文传递
The electrochemical characteristics of AB_(4)-type rare earth-Mg-Ni-based superlattice structure hydrogen storage alloys for nickel metal hydride battery 被引量:4
7
作者 Wenfeng Wang Xiaoxue Liu +6 位作者 Lu Zhang Shuang Zhang Wei Guo Yumeng Zhao Hongming zhang Yuan Li Shumin Han 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期2039-2048,共10页
Rare earth-Mg-Ni-based alloys with superlattice structures are new generation negative electrode materials for the nickel metal hydride batteries.Among them,the novel AB_(4)-type superlattice structure alloy is suppos... Rare earth-Mg-Ni-based alloys with superlattice structures are new generation negative electrode materials for the nickel metal hydride batteries.Among them,the novel AB_(4)-type superlattice structure alloy is supposed to have superior cycling stability and rate capability.Yet its preparation is hindered by the crucial requirement of temperature and the special composition which is close to the other superlattice structure.Here,we prepare rare earth-Mg-Ni-based alloy and study the phase transformation of alloys to make clear the formation of AB_(4)-type phase.It is found Pr_(5)Co_(19)-type phase is converted from Ce_(5)Co_(19)-type phase and shows good stability at higher temperature compared to the Ce_(5)Co_(19)-type phase in the range of 930-970℃.Afterwards,with further 5℃increasing,AB_(4)-type superlattice structure forms at a temperature of 975℃by consuming Pr_(5)Co_(19)-type phase.In contrast with A_(5)B_(19)-type alloy,AB_(4)-type alloy has superior rate capability owing to the dominant advantages of charge transfer and hydrogen diffusion.Besides,AB_(4)-type alloy shows long lifespan whose capacity retention rates are 89.2%at the 100;cycle and 82.8%at the 200;cycle,respectively.AB_(4)-type alloy delivers 1.53 wt.%hydrogen storage capacity at room temperature and exhibits higher plateau pressure than Pr_(5)Co_(19)-type alloy.The work provides novel AB_(4)-type alloy with preferable electrochemical performance as negative electrode material to inspire the development of nickel metal hydride batteries. 展开更多
关键词 Nickel metal hydride batteries Hydrogen storage alloys AB_(4)-type superlattice structure Electrochemical performance kinetics properties
下载PDF
Thermal storage properties of Mg-LaNi using as a solar heat storage material
8
作者 Qi Wan Li-Jun Jiang +3 位作者 Zhi-Nian Li Yang Yang Shu-Mao Wang Xiao-Peng Liu 《Rare Metals》 SCIE EI CAS CSCD 2023年第4期1363-1370,共8页
The effect of LaNi on thermal storage properties of MgH2 prepared by ball milling under hydrogen atmosphere was investigated.The thermal storage properties,cyclic property and thermal storage mechanism were studied by... The effect of LaNi on thermal storage properties of MgH2 prepared by ball milling under hydrogen atmosphere was investigated.The thermal storage properties,cyclic property and thermal storage mechanism were studied by pres sure-composition-temperature(PC T),X-ray diffraction(XRD)and transmission electron microscopy(TEM).The Van't Hoff curve indicates that the formation enthalpy of Mg-16 wt%LaNi is 74.62 kJ·mol^(-1),which approaches to the theoretical values of MgH2.The isothermal measurement indicates that Mg-16 wt%LaNi can absorb 6.263 wt%H_(2)within 30 min at 390℃for the first absorption,the absorption reaction fraction within2 min is over 90.00%,and the desorption reaction fraction within 2 min is 72.63%,increasing by 55.36%compared with that of Mg.Mg-16 wt%LaNi has better cyclic stability than that of Mg,only decreasing by 0.609 wt%after 80cycles.The enhancement in thermal storage performances of Mg by adding LaNi is mainly ascribed to the formed Mg_(2)NiH_(4),H_(0.3)Mg_(2)Ni and La_(4)H_(12.19)during the cyclic process which act as catalysts and inhibit the growth of Mg.The above results prove that Mg-16 wt%LaNi is suitable for use as a heat storage material. 展开更多
关键词 MAGNESIUM Thermal storage Thermodynamic property kinetic property
原文传递
One-pot synthesis of Pt-Cu bimetallic nanocrystals with different structures and their enhanced electrocatalytic properties 被引量:5
9
作者 Daowei Gao Shuna Li +5 位作者 Guolong Song Pengfei Zha Cuncheng Li Qin Wei Yipin Lv Guozhu Chen 《Nano Research》 SCIE EI CAS CSCD 2018年第5期2612-2624,共13页
Shape-controlled synthesis of Pt-Cu alloy nanocrystals (NCs) with unique geometries is of great importance in the rational design and deterministic synthesis of highly active electrocatalysts. Herein, Pt-Cu alloy NC... Shape-controlled synthesis of Pt-Cu alloy nanocrystals (NCs) with unique geometries is of great importance in the rational design and deterministic synthesis of highly active electrocatalysts. Herein, Pt-Cu alloy NCs with concave octahedron (COH), porous octahedron (POH), yolk-shell (YSH), and nanoflower (NOF) structures were fabricated by altering the sequential reduction kinetics in a one-pot aqueous phase. The effect of the reaction kinetics on the formation of Pt-Cu bimetallic NCs with different morphologies was analyzed quantitatively. The concentrations of glycine and metal cation are demonstrated to play a key role in the reduction of Pt(Ⅳ) and Cu(Ⅱ) ions; these significantly affected the morphology of Pt-Cu NCs. These Pt-Cu alloy NCs exhibit substantially enhanced catalytic activity and durability for methanol and formic acid oxidation compared to the commercial Pt/C catalyst. Specifically, the COH and NOF Pt-Cu NCs with more step atoms, intragranular dislocations, and protrusions showed superior electrochemical properties than those of POH and YSH Pt-Cu NCs. The structure- property relationship between the Pt-Cu NCs and their electrochemical performances was also investigated in depth. 展开更多
关键词 Pt-Cu nanocrystals different structures reduction kinetics electrocatalytic properties
原文传递
Effects of iron compounds on pyrolysis behavior of coals and metallurgical properties of resultant cokes 被引量:3
10
作者 Shu-xing Qiu Sheng-fu Zhang +2 位作者 Qing-yun Zhang Gui-bao Qiu Liang-ying Wen 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2017年第12期1169-1176,共8页
The utilization of highly reactive and high-strength coke can enhance the efficiency of blast furnace by promoting indirect reduction of iron oxides.Iron compounds,as the main constituent in iron-bearing minerals,have... The utilization of highly reactive and high-strength coke can enhance the efficiency of blast furnace by promoting indirect reduction of iron oxides.Iron compounds,as the main constituent in iron-bearing minerals,have aroused wide interest in preparation of highly reactive iron coke.However,the effects of iron compounds on pyrolysis behavior of coal and metallurgical properties of resultant cokes are still unclear.Thus,three iron compounds,i.e.,Fe;O;,Fe;O;and FeC;O;·2H;O,were adopted to investigate their effects on coal pyrolysis behavior and metallurgical properties of the resultant cokes.The results show that iron compounds have slight effects on the thermal behavior of coal blend originated from thermogravimetric and differential thermogravimetric curves.The apparent activation energy varies with different iron compounds ranging from 94.85 to 110.11 kJ/mol in the primary pyrolysis process,while lower apparent activation energy is required for the secondary pyrolysis process.Iron compounds have an adverse influence on the mechanical properties and carbon structure of cokes.Strong correlations exist among coke reactivity,coke strength after reaction,and the content of metallic iron in cokes or the values of crystallite stacking height,which reflect the dependency of thermal property on metallic iron content and carbon structure of cokes. 展开更多
关键词 Coal Iron compound Pyrolysis kinetics Metallurgical property
原文传递
Effect of substitution of Si by Al on the microstructure and mechanical properties of bainitic transformation-induced plasticity steels 被引量:7
11
作者 Kangying Zhu Coralie Mager Mingxin Huang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第12期1475-1486,共12页
The effect of partial or full substitution of Si by Al on the microstructure and mechanical properties has been extensively studied in multi-phase transformation-induced plasticity(TRIP) steels with polygonal ferrit... The effect of partial or full substitution of Si by Al on the microstructure and mechanical properties has been extensively studied in multi-phase transformation-induced plasticity(TRIP) steels with polygonal ferrite matrix, but rarely studied in bainitic TRIP steels. The aim of the present study is to properly investigate the effect of Al and Si on bainite transformation, microstructure and mechanical properties in bainitic steels in order to provide guidelines for the alloying design as a function of process parameters for the 3 rd generation advanced high strength steels(AHSS). It is shown from the dilatometry study,microstructural investigations and tensile properties measurements that the Al addition results in an acceleration whereas Si addition leads to a retardation in bainite transformation kinetics. The addition of Al retards the decomposition of austenite into pearlite and carbides at holding temperatures higher than450℃ whereas Si retards the decomposition of austenite into carbides at temperatures lower than 450℃.Consequently, the Al-added bainitic steel has a better strength-elongation combination at bainitic holding temperatures higher than 450℃ while Si-added steel has a better strength-elongation combination at temperatures lower than 450℃. The higher yield strength of Al-added steel is mainly attributed to its finer bainitic lath. The higher tensile strength of Si-added steel is not only related to the stronger contribution of Si on work hardening during deformation, but also due to the higher volume fraction of martensite or martensite/austenite(MA) blocks in all heat treatment conditions, as well as the lower mechanical stability of retained austenite in this steel. 展开更多
关键词 TRIP steel Bainite transformation kinetics Carbide free bainite Mechanical properties AHSS
原文传递
Spheroidizing Behavior and Spheroidizing Kinetics of W-phase During Solid-Solution Treatment in Mg–Zn–Y–Mn–(B)Alloys 被引量:2
12
作者 Kai Yang Jin-Shan Zhang +2 位作者 Xi-Mei Zong Wei Liu Chun-Xiang Xu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第5期464-469,共6页
The spheroidizing mechanism of W-phase in the Mg–Zn–Y–Mn–(B) alloys during solid-solution treatment was investigated by using kinetic methodologies. The microstructure and mechanical properties of heat-treated ... The spheroidizing mechanism of W-phase in the Mg–Zn–Y–Mn–(B) alloys during solid-solution treatment was investigated by using kinetic methodologies. The microstructure and mechanical properties of heat-treated Mg_(94)Zn_(2.5)-Y_(2.5)Mn_1 alloy containing 0.003 wt% B were compared with heat-treated Mg_(94)Zn_(2.5)-Y_(2.5)Mn_1 alloy. The heat-treated Mg_(94)Zn_(2.5)-Y_(2.5)Mn_1 alloy with 0.003 wt% B contained fine and uniform W-phase particles, which exhibited optimal mechanical performance. The ultimate tensile strength, yield strength and elongation were 287.7, 125.5 MPa and 21.1%,respectively. 展开更多
关键词 Magnesium alloys W-phase Spheroidizing kinetics Microstructure Mechanical properties
原文传递
Effect of LaFeO_3 on hydrogenation/dehydrogenation properties of MgH_2
13
作者 张伟 程颖 +2 位作者 李永恒 段智琛 刘坚 《Journal of Rare Earths》 SCIE EI CAS CSCD 2015年第3期334-338,共5页
LaFeO3 was used to improve the hydrogen storage properties of Mg H2. The Mg H2+20 wt.%La Fe O3 composite was prepared by ball milling method. The composite could absorb 3.417 wt.% of hydrogen within 21 min at 423 K w... LaFeO3 was used to improve the hydrogen storage properties of Mg H2. The Mg H2+20 wt.%La Fe O3 composite was prepared by ball milling method. The composite could absorb 3.417 wt.% of hydrogen within 21 min at 423 K while Mg H2 only uptaked 0.977 wt.% hydrogen under the same conditions. The composite also released 3.894 wt.% of hydrogen at 623 K, which was almost twice more than Mg H2. The TPD measurement showed that the onset dissociation temperature of the composite was 570 K, 80 K lower than the Mg H2. Based on the Kissinger plot analysis of the composite, the activation energy E des was estimated to be 86.69 k J/mol, which was 36 k J/mol lower than Mg H2. The XRD and SEM results demonstrated that highly dispersed La Fe O3 could be presented in Mg H2, benefiting the reduction of particle size and also acting as an inhibitor to keep the particles from clustering during the ball-milled process. 展开更多
关键词 magnesium hydride hydrogen storage composite hydrogen properties hydrogenation kinetics rare earths
原文传递
Direct reuse of oxide scrap from retired lithium-ion batteries:advanced cathode materials for sodium-ion batteries
14
作者 Miao Du Kai-Di Du +7 位作者 Jin-Zhi Guo Yan Liu Vanchiappan Aravindan Jia-Lin Yang Kai-Yang Zhang Zhen-Yi Gu Xiao-Tong Wang Xing-Long Wu 《Rare Metals》 SCIE EI CAS CSCD 2023年第5期1603-1613,共11页
The direct reuse of retired lithium-ion batteries(LIBs)cathode materials is one of the optimum choices for"waste-to-wealth"by virtue of sustainable and high economic efficiency.Considering the harmfulness of... The direct reuse of retired lithium-ion batteries(LIBs)cathode materials is one of the optimum choices for"waste-to-wealth"by virtue of sustainable and high economic efficiency.Considering the harmfulness of retired LIBs and the serious shortage of lithium resources,in this work,the spent oxide cathode materials after simple treatment are directly applied to the sodium-ion batteries(SIBs)and exhibit promising application possibilities in advanced SIBs.The spent oxide cathode shows an appropriate initial discharge capacity of 109 mAh·g^(-1)and exhibits transition and activation processes at a current density of 25 mA·g^(-1).Further,it demonstrates decent cycle performance and comparatively good electrode kinetics performance(the apparent ion diffusion coefficient at steady state is about 1×10^(-12)cm^(2)·s^(-1)).The"waste-towealth"concept of this work provides an economical and sustainable strategy for directly reusing the retired LIBs and supplies a large amount of raw material for the largescale application of SIBs. 展开更多
关键词 Spent lithium-ion batteries(LIBs) Oxides REUSE Sodium-ion batteries(SIBs) kinetics property
原文传递
Structure and electrochemical characteristics of LaNi_5-Ti_(0.10)Zr_(0.16)V_(0.34)Cr_(0.10)Ni_(0.30) composite alloy electrode 被引量:3
15
作者 王艳芝 赵敏寿 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第5期774-780,共7页
Composite LaNi5+x wt.% Ti0.10Zr0.16V0.34Cr0.10Ni0.30 (x=0, 1, 5, 10) alloys were prepared by two-step re-melting. X-ray diffractometer (XRD), scanning electron microscopy (FESEM), energy dispersive spectrometry (EDS),... Composite LaNi5+x wt.% Ti0.10Zr0.16V0.34Cr0.10Ni0.30 (x=0, 1, 5, 10) alloys were prepared by two-step re-melting. X-ray diffractometer (XRD), scanning electron microscopy (FESEM), energy dispersive spectrometry (EDS), inductively coupled plasma (ICP) and electrochemical impedance spectroscopy (EIS) analyses showed that the matrix phase of LaNi5 alloy with CaCu5 structure remained unchanged after additive alloy was added, the amount of the second phase increased with increasing x. The synergetic effect withi... 展开更多
关键词 Ni/MH battery metal hydride electrode composite alloy electrochemical properties kinetic properties rare earths
原文传递
A study on turbulence transportation and modification of Spalart–Allmaras model for shock-wave/turbulent boundary layer interaction flow 被引量:9
16
作者 Ma Li Lu Lipeng +1 位作者 Fang Jian Wang Qiuhui 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第2期200-209,共10页
It is of great significance to improve the accuracy of turbulence models in shock-wave/ boundary layer interaction flow. The relationship between the pressure gradient, as well as the shear layer, and the development ... It is of great significance to improve the accuracy of turbulence models in shock-wave/ boundary layer interaction flow. The relationship between the pressure gradient, as well as the shear layer, and the development of turbulent kinetic energy in impinging shock-wave/turbulent bound- ary layer interaction flow at Mach 2.25 is analyzed based on the data of direct numerical simulation (DNS). It is found that the turbulent kinetic energy is amplified by strong shear in the separation zone and the adverse pressure gradient near the separation point. The pressure gradient was non-dimensionalised with local density, velocity, and viscosity. Spalart Allmaras (S A) model is modified by introducing the non-dimensional pressure gradient into the production term of the eddy viscosity transportation equation. Simulation results show that the production and dissipation of eddy viscosity are strongly enhanced by the modification of S-A model. Compared with DNS and experimental data, the wall pressure and the wall skin friction coefficient as well as the velocity profile of the modified S-A model are obviously improved. Thus it can be concluded that the mod- ification of S-A model with the pressure gradient can improve the predictive accuracy for simulat- ing the shock-wave/turbulent boundary laver interaction. 展开更多
关键词 Eddy viscosity Pressure gradient Shock-wave/turbulentboundary layer interaction Spalart-Allmaras model Turbulent kinetic energytransport property
原文传递
Precipitation Behavior of Cu-1.9Be-0.3Ni-0.15Co Alloy During Aging 被引量:5
17
作者 Yan-Chuan Tang Yong-Lin Kang +1 位作者 Li-Juan Yue Xiao-Liang Jiao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第3期307-315,共9页
In this paper,the evolutions of microstructure and mechanical properties of Cu-l.9Be-0.3Ni-0.15Co alloy were studied.The alloys in the condition of the solution treated(soft state) and 37% cold rolled(hard state) ... In this paper,the evolutions of microstructure and mechanical properties of Cu-l.9Be-0.3Ni-0.15Co alloy were studied.The alloys in the condition of the solution treated(soft state) and 37% cold rolled(hard state) were aged at 320 ℃for different time,respectively.The mechanical properties,electrical conductivity and microstructure of the alloy aged for different time were analyzed.Additionally,the precipitation kinetics of Cu-1.9Be-0.3Ni-0.15Co alloys was investigated.X-ray diffraction and transmission electron microscopy results reveal that both continuous precipitation and discontinuous precipitation existed in the hard-state Cu-l.9Be-0.3Ni-0.15Co alloy during the whole aging process;the sequence of continuous precipitation is G.P.zone →γ″→γ′→γ.Furthermore,the precipitation transformation mechanism of softstate alloy is homogeneous nucleation,while hard-state alloy shows the heterogeneous nucleation(interface nucleation)with the nucleation rate of both states decaying rapidly to zero during aging at 320 ℃. 展开更多
关键词 Cu-1.9Be-0.3Ni-0.15Co alloy Aging Microstructure Mechanical property Electrical property Precipitation kinetics
原文传递
Study on electrochemical property of La_(0.75)Mg_(0.25)Ni_(2.85)Co_(0.45–x)(AlSn)_x (x=0.0,0.1,0.2,0.3) alloys 被引量:1
18
作者 蓝志强 李家丞 +2 位作者 魏冰 祝蓉蓉 郭进 《Journal of Rare Earths》 SCIE EI CAS CSCD 2016年第4期401-406,共6页
La_(0.75)Mg_(0.25)Ni_(2.85)Co_(0.45–x)(AlSn)_x(AlSn)_x(x=0.0,0.1,0.2,0.3) alloys were prepared by magnetic induction melting method, and the phase composition and electrochemical properties were investi... La_(0.75)Mg_(0.25)Ni_(2.85)Co_(0.45–x)(AlSn)_x(AlSn)_x(x=0.0,0.1,0.2,0.3) alloys were prepared by magnetic induction melting method, and the phase composition and electrochemical properties were investigated systematically. The alloys were mainly composed of LaNi5, La2Ni7 and LaNi3 phase, and the cell volume of LaNi5 increased with the Al and Sn contents. For the alloy corresponding to x=0.0, the Cmax and C150 were 348.9 and 185 mA h/g, respectively, then for the alloy electrode with x=0.2, even though the Cmax was only 309.0 mA h/g less than 348.9 mA h/g, the C150 of 231 mA h/g was much higher than 185 mA h/g. And the values of the limit current density, anodic peak current density and hydrogen diffusion coefficient of the La0.75Mg0.25Ni2.85Co0.35(AlS n)0.1(x=0.1) alloy were 1079.5, 1023.8 mA /g and 5.71×10–10 cm2/s, respectively. Which were the highest than that of any other electrodes. These results suggested that the kinetic property of the La_(0.75)Mg_(0.25)Ni_(2.85)Co_(0.45–x)(AlSn)_x(AlSn)_x(x=0.0, 0.1, 0.2, 0.3) electrodes could be improved effectively by adding moderate contents of Al and Sn. 展开更多
关键词 hydrogen storage alloy discharge capacity cycle stability kinetic property rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部