A three-dimensional Eulerian multiphase model, with closure law according to the kinetic theory of granular flow, was used to study the gas/solid flow behaviors in spout-fluid beds. The influences of the coefficient o...A three-dimensional Eulerian multiphase model, with closure law according to the kinetic theory of granular flow, was used to study the gas/solid flow behaviors in spout-fluid beds. The influences of the coefficient of restitution due to non-ideal particle collisions on the simulated results were tested. It is demonstrated that the simulated result is strongly affected by the coefficient of restitution. Comparison of simulations with experiments in a small spout-fluid bed showed that an appropriate coefficient of restitution of 0.93 was necessary to simulate the flow characteristics in an underdesigned large size of spout-fluid bed coal gasifier with diameter of lm and height of 6m. The internal jet and gas/solid flow patterns at different operating conditions were obtained. The simulations show that an optimal gas/solid flow pattern for coal gasification is found when the spouting gas flow rate is equal to the fluidizing gas flow rate and the total of them is two and a half times the minimum fluidizing gas flow rate. Besides, the radial distributions of particle velocity and gas velocity show similar tendencies; the radial distributions of particle phase pressure due to particle collisions and the particle pseudo-temperature corresponding to the macroscopic kinetic energy of the random particle motion also show similar tendencies. These indicate that both gas drag force and particle collisions dominate the movement of particles.展开更多
A computational study on the flow behavior of a gas-solid injector by Eulerian approach was carried out. The gas phase was modeled with k-ε turbulent model and the particle phase was modeled with kinetic theory of gr...A computational study on the flow behavior of a gas-solid injector by Eulerian approach was carried out. The gas phase was modeled with k-ε turbulent model and the particle phase was modeled with kinetic theory of granular flow. The simulations by Eulerian two-fluid model (TFM) were compared with the corresponding results by discrete element method (DEM) and experiments. It was showed that TFM simulated results were in reasonable agreement with the experimental and DEM simulated results. Based on TFM simulations, gas-solid flow pattern, gas velocity, particle velocity and the static pressure under different driving jet velocity, backpressure and convergent section angle were obtained. The results showed that the time average axial gas velocity sharply decreased and then slightly increased to a constant value in the horizontal conveying pipe. The time average axial particle velocity increased initially and then decreased, but in the outlet region of the convergent section the particle velocity remarkably increased once more to the maximal value. As a whole, the static pressure distribution change trends were found to be independent on driving gas velocity, backpressure and convergent section angle. However, the static pressure increased with increase of convergent section angle and gas jet velocities. The difference of static pressure to backpressure increased with increasing backpressure.展开更多
The hydrodynamic behavior in a high-density downer reactor was studied. A two-fluid model based on the kinetic theory of granular flow with a k-ε turbulent model was developed to simulate the flow behavior in the sys...The hydrodynamic behavior in a high-density downer reactor was studied. A two-fluid model based on the kinetic theory of granular flow with a k-ε turbulent model was developed to simulate the flow behavior in the system. This simulation achieved an averaged solid fraction in the bed as high as 18% in this operating regime. The flow development in high-density downer consists of 3 regions, which are first acceleration, second acceleration, and fully developed regions. In the fully developed region, the lateral distribution of the solid volume fraction is low and almost uniform in the center region with a high density peak near the wall region. Gas and solid velocities gradually increase toward the wall and form a peak near the wall region. In addition, the solid volume fraction, gas and solid velocities increase with solid circulation rate.展开更多
We investigated the solid–liquid suspension characteristics in the tank with a liquid height/tank diameter ratio of 1.5 stirred by a novel long-short blades(LSB) impeller by the Euler granular flow model coupled with...We investigated the solid–liquid suspension characteristics in the tank with a liquid height/tank diameter ratio of 1.5 stirred by a novel long-short blades(LSB) impeller by the Euler granular flow model coupled with the standard k–ε turbulence model. After validation of the local solid holdup by experiments,numerical predictions have been successfully used to explain the influences of impeller rotating speed,particle density, particle size, liquid viscosity and initial solid loading on the solid suspension behavior,i.e. smaller particles with lower density are more likely to be suspended evenly in the liquid with higher liquid viscosity. At a low impeller rotating speed(N), increase in N leads to an obvious improvement in the solid distribution homogeneity. Moreover, the proposed LSB impeller has obvious advantages in the uniform distribution of the solid particles compared with single Rushton turbine(RT), dual RT impellers or CBY hydrofoil impeller under the same power consumption.展开更多
Hydrodynamics of carbon dioxide fluid-particle mixtures are predicted using a low density ratio-based kinetic theory of granular flow in high pressure carbon dioxide fluid fluidized beds.A coexistence of particle wave...Hydrodynamics of carbon dioxide fluid-particle mixtures are predicted using a low density ratio-based kinetic theory of granular flow in high pressure carbon dioxide fluid fluidized beds.A coexistence of particle waves and particle aggregates exists along bed height.The threshold to identify the occurrence of particle aggregates is suggested based on standard deviation of solid volume fractions in aggregative fluidization.The existence time fractions and frequencies of particle aggregates are predicted along axial direction.The effect of carbon dioxide fluid temperature and pressure on volume fraction and velocity distributions are analyzed at different inlet carbon dioxide velocities and particle densities in high pressure carbon dioxide fluidized beds.Simulated results indicate that the carbon dioxide-particles fluidization transits from particulate to aggregative states with the increase of inlet carbon dioxide ve-locities.The computed fluid volume fractions and heterogeneity indexes are close to the measurements in a high pressure carbon dioxide fluidized bed.展开更多
We present experimental investigations and numerical simulations of a pseudo-2D riser. Experiments were performed for various airflow rates, particle types/diameters, and particle size distributions. Pres- sure distri...We present experimental investigations and numerical simulations of a pseudo-2D riser. Experiments were performed for various airflow rates, particle types/diameters, and particle size distributions. Pres- sure distributions along the wall of the riser were measured, Additional measurements from a smaller pseudo-2D riser (Kallio et al., 2009; Shah et al., 2012) were used to analyze horizontal solids volume fraction profiles. The experimental data were compared with simulation results carried out using an Euler-Euler approach, A mesh sensitivity study was conducted for numerical simulations and effects associated with simplifying real 3D geometry to a 2D model were examined. In addition, the effect of using an algebraic equation to represent the granular temperature versus a full partial differential equation also was examined for numerical simulations. Results showed small but significant near-wall sensitivity of the flow variables to mesh size. Substantial differences in mean pressure, solids distribution, and solid velocities were obtained, when 2D and 3D simulation results were compared. Finally, applying the simplified granular temperature equation for turbulent fluidization and for dilute-phase transport can lead to incorrect predictions in models,展开更多
The Eulerian-Eulerian framework was used in the numerical simulation of liquid hydrodynamics and particle motion in liquid-fluidized beds. The kinetic theory of granular flow, which accounts for the viscous drag influ...The Eulerian-Eulerian framework was used in the numerical simulation of liquid hydrodynamics and particle motion in liquid-fluidized beds. The kinetic theory of granular flow, which accounts for the viscous drag influence on the interstitial liquid phase, was used in combination with two-fluid models to simulate unsteady liquid-solid two-phase flows. We focus on local unsteady features predicted by the numerical models. The solid fraction power spectrum was analyzed. A typical flow pattern, such as core annular flow and particle back-mixing near the wall region of liquid-solid fluidized beds is obtained from this calculation. Effects of the restitution coefficient of particle-particle collisions on the distribution of granular pressure and temperature are discussed. Good agreement was achieved between the simulated results and experimental findings.展开更多
This short communication demonstrates why extreme caution has to be taken when applying conven- tional kinetic-frictional closures to continuum modeling of high shear granulation (HSG), Conventional models refer to ...This short communication demonstrates why extreme caution has to be taken when applying conven- tional kinetic-frictional closures to continuum modeling of high shear granulation (HSG), Conventional models refer to closure laws where the kinetic and frictional stresses are summed up to obtain the total stress field, In the simple, dense, and sheared system ofa Couette shear cell, the effect of the lack of scale separation on the model predictions is examined, both quantitatively and qualitatively. It is observed that the spatial resolution has a significant effect on the magnitude of the kinetic and frictional contributions to the solid phase stresses. With this new investigation and previous studies of HSG, it is concluded that conventional kinetic-frictional models are inadequate for continuum modeling of HSG.展开更多
基金Supported by the National Key Program of Basic Research in China (No.2004CB217702, No.2005CB221202, No.2006CB20030201) and the National Natural Science Foundation of China (No.20590367, No.50676021, No.50606006).
文摘A three-dimensional Eulerian multiphase model, with closure law according to the kinetic theory of granular flow, was used to study the gas/solid flow behaviors in spout-fluid beds. The influences of the coefficient of restitution due to non-ideal particle collisions on the simulated results were tested. It is demonstrated that the simulated result is strongly affected by the coefficient of restitution. Comparison of simulations with experiments in a small spout-fluid bed showed that an appropriate coefficient of restitution of 0.93 was necessary to simulate the flow characteristics in an underdesigned large size of spout-fluid bed coal gasifier with diameter of lm and height of 6m. The internal jet and gas/solid flow patterns at different operating conditions were obtained. The simulations show that an optimal gas/solid flow pattern for coal gasification is found when the spouting gas flow rate is equal to the fluidizing gas flow rate and the total of them is two and a half times the minimum fluidizing gas flow rate. Besides, the radial distributions of particle velocity and gas velocity show similar tendencies; the radial distributions of particle phase pressure due to particle collisions and the particle pseudo-temperature corresponding to the macroscopic kinetic energy of the random particle motion also show similar tendencies. These indicate that both gas drag force and particle collisions dominate the movement of particles.
基金Supported by the National High Technology Research and Development Program of China (2006AA05A103), the National Natural Science Foundation of China (50706007), Foundation of Graduate Creative Program of Jiangsu (CX08B-060Z), and the Foundation for Excellent Ph.D. Thesis of Southeast University. ACKNOWLEDGEMENTS The authors also expressed sincere gratitude to Professors M. Horio, B. Leckner, A. Kane and E.J. Anthony for constructive advice during their visiting period in Southeast University, which contributed to our research.
文摘A computational study on the flow behavior of a gas-solid injector by Eulerian approach was carried out. The gas phase was modeled with k-ε turbulent model and the particle phase was modeled with kinetic theory of granular flow. The simulations by Eulerian two-fluid model (TFM) were compared with the corresponding results by discrete element method (DEM) and experiments. It was showed that TFM simulated results were in reasonable agreement with the experimental and DEM simulated results. Based on TFM simulations, gas-solid flow pattern, gas velocity, particle velocity and the static pressure under different driving jet velocity, backpressure and convergent section angle were obtained. The results showed that the time average axial gas velocity sharply decreased and then slightly increased to a constant value in the horizontal conveying pipe. The time average axial particle velocity increased initially and then decreased, but in the outlet region of the convergent section the particle velocity remarkably increased once more to the maximal value. As a whole, the static pressure distribution change trends were found to be independent on driving gas velocity, backpressure and convergent section angle. However, the static pressure increased with increase of convergent section angle and gas jet velocities. The difference of static pressure to backpressure increased with increasing backpressure.
文摘The hydrodynamic behavior in a high-density downer reactor was studied. A two-fluid model based on the kinetic theory of granular flow with a k-ε turbulent model was developed to simulate the flow behavior in the system. This simulation achieved an averaged solid fraction in the bed as high as 18% in this operating regime. The flow development in high-density downer consists of 3 regions, which are first acceleration, second acceleration, and fully developed regions. In the fully developed region, the lateral distribution of the solid volume fraction is low and almost uniform in the center region with a high density peak near the wall region. Gas and solid velocities gradually increase toward the wall and form a peak near the wall region. In addition, the solid volume fraction, gas and solid velocities increase with solid circulation rate.
基金the financial support from the National Natural Science Foundation of China (22078058)Open Research Fund Program of CAS Key Laboratory of Energy Regulation Materials (ORFP2020–02)
文摘We investigated the solid–liquid suspension characteristics in the tank with a liquid height/tank diameter ratio of 1.5 stirred by a novel long-short blades(LSB) impeller by the Euler granular flow model coupled with the standard k–ε turbulence model. After validation of the local solid holdup by experiments,numerical predictions have been successfully used to explain the influences of impeller rotating speed,particle density, particle size, liquid viscosity and initial solid loading on the solid suspension behavior,i.e. smaller particles with lower density are more likely to be suspended evenly in the liquid with higher liquid viscosity. At a low impeller rotating speed(N), increase in N leads to an obvious improvement in the solid distribution homogeneity. Moreover, the proposed LSB impeller has obvious advantages in the uniform distribution of the solid particles compared with single Rushton turbine(RT), dual RT impellers or CBY hydrofoil impeller under the same power consumption.
基金funded by National Natural Science Foundation of China under the Grant No.51776059 and Key R&D Program of China Construction Second Engineering Bureau Co.Ltd.(Grant No.2021ZX180001).
文摘Hydrodynamics of carbon dioxide fluid-particle mixtures are predicted using a low density ratio-based kinetic theory of granular flow in high pressure carbon dioxide fluid fluidized beds.A coexistence of particle waves and particle aggregates exists along bed height.The threshold to identify the occurrence of particle aggregates is suggested based on standard deviation of solid volume fractions in aggregative fluidization.The existence time fractions and frequencies of particle aggregates are predicted along axial direction.The effect of carbon dioxide fluid temperature and pressure on volume fraction and velocity distributions are analyzed at different inlet carbon dioxide velocities and particle densities in high pressure carbon dioxide fluidized beds.Simulated results indicate that the carbon dioxide-particles fluidization transits from particulate to aggregative states with the increase of inlet carbon dioxide ve-locities.The computed fluid volume fractions and heterogeneity indexes are close to the measurements in a high pressure carbon dioxide fluidized bed.
文摘We present experimental investigations and numerical simulations of a pseudo-2D riser. Experiments were performed for various airflow rates, particle types/diameters, and particle size distributions. Pres- sure distributions along the wall of the riser were measured, Additional measurements from a smaller pseudo-2D riser (Kallio et al., 2009; Shah et al., 2012) were used to analyze horizontal solids volume fraction profiles. The experimental data were compared with simulation results carried out using an Euler-Euler approach, A mesh sensitivity study was conducted for numerical simulations and effects associated with simplifying real 3D geometry to a 2D model were examined. In addition, the effect of using an algebraic equation to represent the granular temperature versus a full partial differential equation also was examined for numerical simulations. Results showed small but significant near-wall sensitivity of the flow variables to mesh size. Substantial differences in mean pressure, solids distribution, and solid velocities were obtained, when 2D and 3D simulation results were compared. Finally, applying the simplified granular temperature equation for turbulent fluidization and for dilute-phase transport can lead to incorrect predictions in models,
文摘The Eulerian-Eulerian framework was used in the numerical simulation of liquid hydrodynamics and particle motion in liquid-fluidized beds. The kinetic theory of granular flow, which accounts for the viscous drag influence on the interstitial liquid phase, was used in combination with two-fluid models to simulate unsteady liquid-solid two-phase flows. We focus on local unsteady features predicted by the numerical models. The solid fraction power spectrum was analyzed. A typical flow pattern, such as core annular flow and particle back-mixing near the wall region of liquid-solid fluidized beds is obtained from this calculation. Effects of the restitution coefficient of particle-particle collisions on the distribution of granular pressure and temperature are discussed. Good agreement was achieved between the simulated results and experimental findings.
文摘This short communication demonstrates why extreme caution has to be taken when applying conven- tional kinetic-frictional closures to continuum modeling of high shear granulation (HSG), Conventional models refer to closure laws where the kinetic and frictional stresses are summed up to obtain the total stress field, In the simple, dense, and sheared system ofa Couette shear cell, the effect of the lack of scale separation on the model predictions is examined, both quantitatively and qualitatively. It is observed that the spatial resolution has a significant effect on the magnitude of the kinetic and frictional contributions to the solid phase stresses. With this new investigation and previous studies of HSG, it is concluded that conventional kinetic-frictional models are inadequate for continuum modeling of HSG.