A kinetic-potentiometric method for simultaneous determination of Cerium(IV) and dichoromate (Cr2O72-) by H-point standard addition method (HPSAM), partial least squares (PLS) and principal component regression (PCR) ...A kinetic-potentiometric method for simultaneous determination of Cerium(IV) and dichoromate (Cr2O72-) by H-point standard addition method (HPSAM), partial least squares (PLS) and principal component regression (PCR) using fluoride ion-selective electrode (FISE) is described. In this work, the difference between the rate of the oxidation reaction of Fe(II) to Fe(III) in the presence of Ce4+ and Cr2O72- is based of the method. The rate of consume fluoride ion for making complex is detected with a FISE. The results show that simultaneous determination of Ce4+ and Cr2O72- can be done in their concentration ranges of 1.0-30.0 and 0.1-20.0 μg/mL, respectively. The total relative standard error for applying the PLS and PCR methods on 8 synthetic samples was 2.97 and 3.19, respectively in the concentration ranges of 1.0-30.0 μg/mL of Ce4+ and 0.1-20.0 μg/mL of Cr2O72-. In order for the selectivity of the method to be assessed, we evaluated the effects of certain foreign ions upon the reaction rate and assessed the selectivity of the method. The proposed methods (HPSAM, PLS and PCR) were evaluated using a set of synthetic sample mixtures and then applied for simultaneous determination of Ce4+ and Cr2O72- in different water samples.展开更多
文摘A kinetic-potentiometric method for simultaneous determination of Cerium(IV) and dichoromate (Cr2O72-) by H-point standard addition method (HPSAM), partial least squares (PLS) and principal component regression (PCR) using fluoride ion-selective electrode (FISE) is described. In this work, the difference between the rate of the oxidation reaction of Fe(II) to Fe(III) in the presence of Ce4+ and Cr2O72- is based of the method. The rate of consume fluoride ion for making complex is detected with a FISE. The results show that simultaneous determination of Ce4+ and Cr2O72- can be done in their concentration ranges of 1.0-30.0 and 0.1-20.0 μg/mL, respectively. The total relative standard error for applying the PLS and PCR methods on 8 synthetic samples was 2.97 and 3.19, respectively in the concentration ranges of 1.0-30.0 μg/mL of Ce4+ and 0.1-20.0 μg/mL of Cr2O72-. In order for the selectivity of the method to be assessed, we evaluated the effects of certain foreign ions upon the reaction rate and assessed the selectivity of the method. The proposed methods (HPSAM, PLS and PCR) were evaluated using a set of synthetic sample mixtures and then applied for simultaneous determination of Ce4+ and Cr2O72- in different water samples.