期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Human androgen deficiency: insights gained from androgen receptor knockout mouse models 被引量:13
1
作者 Kesha Rana Rachel A Davey Jeffrey D Zajac 《Asian Journal of Andrology》 SCIE CAS CSCD 2014年第2期169-177,I0006,共10页
The mechanism of androgen action is complex. Recently, significant advances have been made into our understanding of how androgens act via the androgen receptor (AR) through the use of genetically modified mouse mod... The mechanism of androgen action is complex. Recently, significant advances have been made into our understanding of how androgens act via the androgen receptor (AR) through the use of genetically modified mouse models. A number of global and tissue-specific AR knockout (ARKO) models have been generated using the Cre-loxP system which allows tissue- and/or cell-specific deletion. These ARKO models have examined a number of sites of androgen action including the cardiovascular system, the immune and hemopoetic system, bone, muscle, adipose tissue, the prostate and the brain. This review focuses on the insights that have been gained into human androgen deficiency through the use of ARKO mouse models at each of these sites of action, and highlights the strengths and limitations of these Cre-loxP mouse models that should be considered to ensure accurate interpretation of the phenotype. 展开更多
关键词 androgen receptor androgen receptor knockout mouse model androgen deficiency
下载PDF
Deletion of phosphatidylserine flippase β-subunit Tmem30a in satellite cells leads to delayed skeletal muscle regeneration 被引量:4
2
作者 Kuan-Xiang Sun Xiao-Yan Jiang +5 位作者 Xiao Li Yu-Jing Su Ju-Lin Wang Lin Zhang Ye-Ming Yang Xian-Jun Zhu 《Zoological Research》 SCIE CAS CSCD 2021年第5期650-659,共10页
Phosphatidylserine(PS)is distributed asymmetrically in the plasma membrane of eukaryotic cells.Phosphatidylserine flippase(P4-ATPase)transports PS from the outer leaflet of the lipid bilayer to the inner leaflet of th... Phosphatidylserine(PS)is distributed asymmetrically in the plasma membrane of eukaryotic cells.Phosphatidylserine flippase(P4-ATPase)transports PS from the outer leaflet of the lipid bilayer to the inner leaflet of the membrane to maintain PS asymmetry.TheβsubunitTMEM30 Ais indispensable for transport and proper function of P4-ATPase.Previous studies have shown that the ATP11 A and TMEM30 A complex is the molecular switch for myotube formation.However,the role of Tmem30 a in skeletal muscle regeneration remains elusive.In the current study,Tmem30 a was highly expressed in the tibialis anterior(TA)muscles of dystrophin-null(mdx)mice and BaCl2-induced muscle injury model mice.We generated a satellite cell(SC)-specific Tmem30 a conditional knockout(cKO)mouse model to investigate the role of Tmem30 a in skeletal muscle regeneration.The regenerative ability of cKO mice was evaluated by analyzing the number and diameter of regenerated SCs after the TA muscles were injured by BaCl2-injection.Compared to the control mice,the cKO mice showed decreased Pax7+and MYH3+SCs,indicating diminished SC proliferation,and decreased expression of muscular regulatory factors(MYOD and MYOG),suggesting impaired myoblast proliferation in skeletal muscle regeneration.Taken together,these results demonstrate the essential role of Tmem30 a in skeletal muscle regeneration. 展开更多
关键词 Tmem30a Skeletalmuscle regeneration knockout mouse model Atp11a Satellite cell
下载PDF
Fibrinogen deficiency suppresses the development of early and delayed radiation enteropathy 被引量:1
3
作者 Junru Wang Rupak Pathak +1 位作者 Sarita Garg Martin Hauer-Jensen 《World Journal of Gastroenterology》 SCIE CAS 2017年第26期4701-4711,共11页
To determine the mechanistic role of fibrinogen, a key regulator of inflammation and fibrosis, in early and delayed radiation enteropathy. METHODSFibrinogen wild-type (Fib<sup>+/+</sup>), fibrinogen hetero... To determine the mechanistic role of fibrinogen, a key regulator of inflammation and fibrosis, in early and delayed radiation enteropathy. METHODSFibrinogen wild-type (Fib<sup>+/+</sup>), fibrinogen heterozygous (Fib<sup>+/-</sup>), and fibrinogen knockout (Fib<sup>-/-</sup>) mice were exposed to localized intestinal irradiation and assessed for early and delayed structural changes in the intestinal tissue. A 5-cm segment of ileum of mice was exteriorized and exposed to 18.5 Gy of x-irradiation. Intestinal tissue injury was assessed by quantitative histology, morphometry, and immunohistochemistry at 2 wk and 26 wk after radiation. Plasma fibrinogen level was measured by enzyme-linked immunosorbent assay. RESULTSThere was no difference between sham-irradiated Fib<sup>+/+</sup> and Fib<sup>+/-</sup> mice in terms of fibrinogen concentration in plasma and intestinal tissue, intestinal histology, morphometry, intestinal smooth muscle cell proliferation, and neutrophil infiltration. Therefore, Fib<sup>+/-</sup> mice were used as littermate controls. Unlike sham-irradiated Fib<sup>+/+</sup> and Fib<sup>+/-</sup> mice, no fibrinogen was detected in the plasma and intestinal tissue of sham-irradiated Fib<sup>-/-</sup> mice. Moreover, fibrinogen level was not elevated after irradiation in the intestinal tissue of Fib<sup>-/-</sup> mice, while significant increase in intestinal fibrinogen level was noticed in irradiated Fib<sup>+/+</sup> and Fib<sup>+/-</sup> mice. Importantly, irradiated Fib<sup>-/-</sup> mice exhibited substantially less overall intestinal structural injury (RIS, P = 0.000002), intestinal wall thickness (P = 0.003), intestinal serosal thickness (P = 0.009), collagen deposition (P = 0.01), TGF-β immunoreactivity (P = 0.03), intestinal smooth muscle proliferation (P = 0.046), neutrophil infiltration (P = 0.01), and intestinal mucosal injury (P = 0.0003), compared to irradiated Fib<sup>+/+</sup> and Fib<sup>+/-</sup> mice at both 2 wk and 26 wk. CONCLUSIONThese data demonstrate that fibrinogen deficiency directly attenuates development of early and delayed radiation enteropathy. Fibrinogen could be a novel target in treating intestinal damage. 展开更多
关键词 Radiation enteropathy knockout mouse model FIBRINOGEN Inflammation Fibrosis Ionizing radiation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部