From the comparison of correlation tensor in the theory of quantum network, the Alexander relation matrix in the theory of knot crystals and the identical inversion relations under the action of Pauli matrices, we sho...From the comparison of correlation tensor in the theory of quantum network, the Alexander relation matrix in the theory of knot crystals and the identical inversion relations under the action of Pauli matrices, we show that there is a one to one correspondence between four Bell bases and four oriented links of the linkage in knot theory.展开更多
The GHZ states and W states are two fundamental types of three qubits quantum entangled states. For finding the knotted pictures of three nodes W states, on the one side, we empty any one node, thus obtaining three de...The GHZ states and W states are two fundamental types of three qubits quantum entangled states. For finding the knotted pictures of three nodes W states, on the one side, we empty any one node, thus obtaining three degenerated twonode W states, then we find the nonzero submatrix of the corresponding covariance correlation tensor in quantum network theory. On the other side, excepting the linkage 41 corresponding to Bell bases, we conjecture that the another one possible oriented link (which is composed of two-component knots entangled with each other and has four crossings) would be the required knotted pictures of the two nodes W states, thence obtain the nonzero submatrix of the Alexander relation matrix in the theory of knot crystals for these knotted pictures. The equality of the two nonzero submatfices of different kinds thus verify the exactness of our conjecture. The superposition of three knotted pictures of two-node W states from different choices of the emptied node gives the knotted pictures of three-node W states, thus shows the correspondence between three-node W states in quantum network theory and the oriented links in knot theory. Finally we point out that there is an intimate and simple relationship between the knotted pictures of GHZ states and W states.展开更多
文摘From the comparison of correlation tensor in the theory of quantum network, the Alexander relation matrix in the theory of knot crystals and the identical inversion relations under the action of Pauli matrices, we show that there is a one to one correspondence between four Bell bases and four oriented links of the linkage in knot theory.
文摘The GHZ states and W states are two fundamental types of three qubits quantum entangled states. For finding the knotted pictures of three nodes W states, on the one side, we empty any one node, thus obtaining three degenerated twonode W states, then we find the nonzero submatrix of the corresponding covariance correlation tensor in quantum network theory. On the other side, excepting the linkage 41 corresponding to Bell bases, we conjecture that the another one possible oriented link (which is composed of two-component knots entangled with each other and has four crossings) would be the required knotted pictures of the two nodes W states, thence obtain the nonzero submatrix of the Alexander relation matrix in the theory of knot crystals for these knotted pictures. The equality of the two nonzero submatfices of different kinds thus verify the exactness of our conjecture. The superposition of three knotted pictures of two-node W states from different choices of the emptied node gives the knotted pictures of three-node W states, thus shows the correspondence between three-node W states in quantum network theory and the oriented links in knot theory. Finally we point out that there is an intimate and simple relationship between the knotted pictures of GHZ states and W states.