This study endeavors to formulate a comprehensive methodology for establishing a Geological Knowledge Base(GKB)tailored to fracture-cavity reservoir outcrops within the North Tarim Basin.The acquisition of quantitativ...This study endeavors to formulate a comprehensive methodology for establishing a Geological Knowledge Base(GKB)tailored to fracture-cavity reservoir outcrops within the North Tarim Basin.The acquisition of quantitative geological parameters was accomplished through diverse means such as outcrop observations,thin section studies,unmanned aerial vehicle scanning,and high-resolution cameras.Subsequently,a three-dimensional digital outcrop model was generated,and the parameters were standardized.An assessment of traditional geological knowledge was conducted to delineate the knowledge framework,content,and system of the GKB.The basic parameter knowledge was extracted using multiscale fine characterization techniques,including core statistics,field observations,and microscopic thin section analysis.Key mechanism knowledge was identified by integrating trace elements from filling,isotope geochemical tests,and water-rock simulation experiments.Significant representational knowledge was then extracted by employing various methods such as multiple linear regression,neural network technology,and discriminant classification.Subsequently,an analogy study was performed on the karst fracture-cavity system(KFCS)in both outcrop and underground reservoir settings.The results underscored several key findings:(1)Utilization of a diverse range of techniques,including outcrop observations,core statistics,unmanned aerial vehicle scanning,high-resolution cameras,thin section analysis,and electron scanning imaging,enabled the acquisition and standardization of data.This facilitated effective management and integration of geological parameter data from multiple sources and scales.(2)The GKB for fracture-cavity reservoir outcrops,encompassing basic parameter knowledge,key mechanism knowledge,and significant representational knowledge,provides robust data support and systematic geological insights for the intricate and in-depth examination of the genetic mechanisms of fracture-cavity reservoirs.(3)The developmental characteristics of fracturecavities in karst outcrops offer effective,efficient,and accurate guidance for fracture-cavity research in underground karst reservoirs.The outlined construction method of the outcrop geological knowledge base is applicable to various fracture-cavity reservoirs in different layers and regions worldwide.展开更多
Objective: Given the unique cultural background, way of life, and physical environment of the Tibetan Plateau, this study aims to investigate the effects of health education using problem-based learning (PBL) approach...Objective: Given the unique cultural background, way of life, and physical environment of the Tibetan Plateau, this study aims to investigate the effects of health education using problem-based learning (PBL) approaches on the knowledge, attitude, practice, and coping skills of women with high-risk pregnancies in this region. Methods: 76 high-risk pregnancy cases were enrolled at Tibet’s Linzhi People’s Hospital between September 2023 and April 2024. 30 patients admitted between September 2023 and December 2023 were selected as the control group and were performed with regular patient education. 46 patients admitted between January 2024 and April 2024 were selected as the observation group and were performed regular patient education with problem-based learning approaches. Two groups’ performance on their health knowledge, attitude, practice and coping skills before and after interventions were evaluated, and patient satisfaction were measured at the end of the study. Results: There was no statistical significance (P P P Conclusions: Health education with problem-based learning approaches is worth promoting as it can help high-risk pregnant women in plateau areas develop better health knowledge, attitude and practice and healthier coping skills. Also, it can improve patient sanctification.展开更多
In this paper, the knowledge based enterprise is considered as an organism, which possesses a set of capabilities. The organizational structure model of knowledge based enterprise organism is described in order to pos...In this paper, the knowledge based enterprise is considered as an organism, which possesses a set of capabilities. The organizational structure model of knowledge based enterprise organism is described in order to possess the essential capacity set. A dynamic capacity set is defined and analyzed based on the definition of the growth and development for knowledge based enterprise organism. The structure of the capacity base, a subset of the capacity set, is optimized for different periods of the organism ...展开更多
The knowledge representation mode and inference control strategy were analyzed according to the specialties of air-conditioning cooling/heating sources selection. The constructing idea and working procedure for knowle...The knowledge representation mode and inference control strategy were analyzed according to the specialties of air-conditioning cooling/heating sources selection. The constructing idea and working procedure for knowledge base and inference engine were proposed while the realization technique of the C language was discussed. An intelligent decision support system (IDSS) model based on such knowledge representation and inference mechanism was developed by domain engineers. The model was verified to have a small kernel and powerful capability in list processing and data driving, which was successfully used in the design of a cooling/heating sources system for a large-sized office building.展开更多
QNET-CFD is a thematic network on quality and trust for the industrial applications of Computational Fluid Dynamics (CFD), developed under the European Union R&D program. The main objectives of QNET-CFD were to col...QNET-CFD is a thematic network on quality and trust for the industrial applications of Computational Fluid Dynamics (CFD), developed under the European Union R&D program. The main objectives of QNET-CFD were to collect CFD and experimental data in a systematic and quality controlled way and to set the basis for a consistent Knowledge Base in support of CFD guidance and validation. The QNET-CFD activity was organized around six Thematic Areas (TAs) covering the following industry sectors: external aerodynamics; combustion & heat transfer; chemical process, thermal hydraulics and nuclear safety; civil construction & HVAC; environment; turbomachinery internal flows. The main outcome of the QNET-CFD actions is the Knowledge Base (KB) with contains in a user oriented interface, extensive experimental and CFD data for a large number of test cases subdivided into 53 Application Challenges (AC) and 43 Underlying Flow Regimes (UFR). The KB contains, in addition to state-of-the-art reviews for each of the six thematic areas, Best Practice Advice (BPA) in the use of CFD for most of AC. This is considered as a significant contribution form the QNET-CFD activities and it is expected that the level of the thrust and quality in CFD will hereby be improved.展开更多
To improve the efficiency and accuracy of carbonate reservoir research,a unified reservoir knowledge base linking geological knowledge management with reservoir research is proposed.The reservoir knowledge base serves...To improve the efficiency and accuracy of carbonate reservoir research,a unified reservoir knowledge base linking geological knowledge management with reservoir research is proposed.The reservoir knowledge base serves high-quality analysis,evaluation,description and geological modeling of reservoirs.The knowledge framework is divided into three categories:technical service standard,technical research method and professional knowledge and cases related to geological objects.In order to build a knowledge base,first of all,it is necessary to form a knowledge classification system and knowledge description standards;secondly,to sort out theoretical understandings and various technical methods for different geologic objects and work out a technical service standard package according to the technical standard;thirdly,to collect typical outcrop and reservoir cases,constantly expand the content of the knowledge base through systematic extraction,sorting and saving,and construct professional knowledge about geological objects.Through the use of encyclopedia based collaborative editing architecture,knowledge construction and sharing can be realized.Geological objects and related attribute parameters can be automatically extracted by using natural language processing(NLP)technology,and outcrop data can be collected by using modern fine measurement technology,to enhance the efficiency of knowledge acquisition,extraction and sorting.In this paper,the geological modeling of fracture-cavity reservoir in the Tarim Basin is taken as an example to illustrate the construction of knowledge base of carbonate reservoir and its application in geological modeling of fracture-cavity carbonate reservoir.展开更多
Based on the knowledge representation and knowledge reasoning, this paper addresses the creation of the multi-attribute knowledge base on the basis of hybrid knowledge representation, with the help of object-oriented ...Based on the knowledge representation and knowledge reasoning, this paper addresses the creation of the multi-attribute knowledge base on the basis of hybrid knowledge representation, with the help of object-oriented programming language and relational database. Compared with general knowledge base, multi-attribute knowledge base can enhance the ability of knowledge processing and application; integrate the heterogeneous knowledge, such as model, symbol, case-based sample knowledge; and support the whole decision process by integrated reasoning.展开更多
The present work deals with the development of an Ontology-Based Knowledge Network of soil/water physicochemical & biological properties (soil/water concepts), derived from ASTM Standard Methods (ASTMi,n) and rele...The present work deals with the development of an Ontology-Based Knowledge Network of soil/water physicochemical & biological properties (soil/water concepts), derived from ASTM Standard Methods (ASTMi,n) and relevant scientific/applicable references (published papers—PPi,n) to fill up/bridge the gap of the information science between cited Standards and infiltration discipline conceptual vocabulary providing accordingly a dedicated/internal Knowledge Base (KB). This attempt constitutes an innovative approach, since it is based on externalizing domain knowledge in the form of Ontology-Based Knowledge Networks, incorporating standardized methodology in soil engineering. The ontology soil/water concepts (semantics) of the developed network correspond to soil/water physicochemical & biological properties, classified in seven different generations that are distinguished/located in infiltration/percolation process of contaminated water through soil porous media. The interconnections with arcs between corresponding concepts/properties among the consecutive generations are defined by the relationship of dependent and independent variables. All these interconnections are documented according to the below three ways: 1) dependent and independent variables interconnected by using the logical operator “<em>depends on</em>” quoting existent explicit functions and equations;2) dependent and independent variables interconnected by using the logical operator “<em>depends on</em>” quoting produced implicit functions, according to Rayleigh’s method of indices;3) dependent and independent variables interconnected by using the logical operator “<em>related to</em>” based on a logical dependence among the examined nodes-concepts-variables. The aforementioned approach provides significant advantages to semantic web developers and web users by means of prompt knowledge navigation, tracking, retrieval and usage.展开更多
Aiming at the relation linking task for question answering over knowledge base,especially the multi relation linking task for complex questions,a relation linking approach based on the multi-attention recurrent neural...Aiming at the relation linking task for question answering over knowledge base,especially the multi relation linking task for complex questions,a relation linking approach based on the multi-attention recurrent neural network(RNN)model is proposed,which works for both simple and complex questions.First,the vector representations of questions are learned by the bidirectional long short-term memory(Bi-LSTM)model at the word and character levels,and named entities in questions are labeled by the conditional random field(CRF)model.Candidate entities are generated based on a dictionary,the disambiguation of candidate entities is realized based on predefined rules,and named entities mentioned in questions are linked to entities in knowledge base.Next,questions are classified into simple or complex questions by the machine learning method.Starting from the identified entities,for simple questions,one-hop relations are collected in the knowledge base as candidate relations;for complex questions,two-hop relations are collected as candidates.Finally,the multi-attention Bi-LSTM model is used to encode questions and candidate relations,compare their similarity,and return the candidate relation with the highest similarity as the result of relation linking.It is worth noting that the Bi-LSTM model with one attentions is adopted for simple questions,and the Bi-LSTM model with two attentions is adopted for complex questions.The experimental results show that,based on the effective entity linking method,the Bi-LSTM model with the attention mechanism improves the relation linking effectiveness of both simple and complex questions,which outperforms the existing relation linking methods based on graph algorithm or linguistics understanding.展开更多
In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty ...In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty or not usually influences our knowledge about other components. Some experts may draw such a conclusion that 'if component m 1 is faulty, then component m 2 may be faulty too'. How can we use this experts' knowledge to aid the diagnosis? Based on Kohlas's probabilistic assumption-based reasoning method, we use Bayes networks to solve this problem. We calculate the posterior fault probability of the components in the observation state. The result is reasonable and reflects the effectiveness of the experts' knowledge.展开更多
Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization...Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization efficiency and quality, a new knowledge-based real-coded genetic algorithm is proposed. A dual evolution mechanism combining knowledge evolution with genetic algorithm is established to extract, handle and utilize the shallow and deep implicit constraint knowledge to guide the optimal searching of genetic algorithm circularly. Based on this dual evolution mechanism, knowledge evolution and population evolution can be connected by knowledge influence operators to improve the conflgurability of knowledge and genetic operators. Then, the new knowledge-based selection operator, crossover operator and mutation operator are proposed to integrate the optimal process knowledge and domain culture to guide the excavator boom structural optimization. Eight kinds of testing algorithms, which include different genetic operators, arc taken as examples to solve the structural optimization of a medium-sized excavator boom. By comparing the results of optimization, it is shown that the algorithm including all the new knowledge-based genetic operators can more remarkably improve the evolutionary rate and searching ability than other testing algorithms, which demonstrates the effectiveness of knowledge for guiding optimal searching. The proposed knowledge-based genetic algorithm by combining multi-level knowledge evolution with numerical optimization provides a new effective method for solving the complex engineering optimization problem.展开更多
Automatic bridge detection is an important application of SAR images. Differed from the classical CFAR method, a new knowledge-based bridge detection approach is proposed. The method not only uses the backscattering i...Automatic bridge detection is an important application of SAR images. Differed from the classical CFAR method, a new knowledge-based bridge detection approach is proposed. The method not only uses the backscattering intensity difference between targets and background but also applies the contextual information and spatial relationship between objects. According to bridges' special characteristics and scattering properties in SAR images, the new knowledge-based method includes three processes: river segmentation, potential bridge areas detection and bridge discrimination. The application to AIRSAR data shows that the new method is not sensitive to rivers' shape. Moreover, this method can detect bridges successfully when river segmentation is not very exact and is more robust than the radius projection method.展开更多
Knowledge-Based Engineering (KBE) is introduced into the ship structural design in this paper. From the implementation of KBE, the design solutions for both Rules Design Method (RDM) and Interpolation Design Meth...Knowledge-Based Engineering (KBE) is introduced into the ship structural design in this paper. From the implementation of KBE, the design solutions for both Rules Design Method (RDM) and Interpolation Design Method (IDM) are generated. The corresponding Finite Element (FE) models are generated. Topological design of the longitudinal structures is studied where the Gaussian Process (GP) is employed to build the surrogate model for FE analysis. Multi-objective optimization methods inspired by Pareto Front are used to reduce the design tank weight and outer surface area simultaneously. Additionally, an enhanced Level Set Method (LSM) which employs implicit algorithm is applied to the topological design of typical bracket plate which is used extensively in ship structures. Two different sets of boundary conditions are considered. The proposed methods show satisfactory efficiency and accuracy.展开更多
By the turn of the 21 st century,the significance of knowledge to be the key factor in urban and regional development is well established. However,it has been recently and in only a few studies that attempts have been...By the turn of the 21 st century,the significance of knowledge to be the key factor in urban and regional development is well established. However,it has been recently and in only a few studies that attempts have been made to identify the specific mechanism and institutional relationships,through which knowledge-based development actually takes place.This paper builds upon the "Triple Helix Model" (Etzkowitz & Klofsten,2005) where university,business and government have been introduced as the key factors behind any knowledge-based development.It refers to a case study of knowledge-based community development in Australia's Smart State Queensland-and examines the role of the "Triple Helix" in the interaction between local and regional level.It shows the central role of the community as an innovation base for the interaction among the key factors and suggests a promotion for a Quadruple Helix Model where community is as important as business,university and government in the new economy.The paper concludes that knowledge-based development will not promote unless all four factors-community,business,university,government-work together.展开更多
This paper studies the linkage problem between the result of high-level synthesis and back-end technology, presents a method of high-level technology mapping based on knowl edge, and studies deeply all of its importan...This paper studies the linkage problem between the result of high-level synthesis and back-end technology, presents a method of high-level technology mapping based on knowl edge, and studies deeply all of its important links such as knowledge representation, knowledge utility and knowledge acquisition. It includes: (1) present a kind of expanded production about knowledge of circuit structure; (2) present a VHDL-based method to acquire knowledge of tech nology mapping; (3) provide solution control strategy and algorithm of knowledge utility; (4)present a half-automatic maintenance method, which can find redundance and contradiction of knowledge base; (5) present a practical method to embed the algorithm into knowledge system to decrease complexity of knowledge base. A system has been developed and linked with three kinds of technologies, so verified the work of this paper.展开更多
Parallel Knowledge Base Machine PKBM95 is a kind of special computer which is designed to improve the inference capability of production systems. Its hardware architecture is a multiprocessor, consisting of one microc...Parallel Knowledge Base Machine PKBM95 is a kind of special computer which is designed to improve the inference capability of production systems. Its hardware architecture is a multiprocessor, consisting of one microcomputer and four TRANSPUTERs. We will focus our discussion on the concentration-scattered inference model and the twice-conflict resolution strategy presented in the this paper, as well as the architecture and operating language of PKBM95. According to experiments, they are effective in improving the inference capability of the system.展开更多
A new structure of ESKD (expert system based on knowledge discovery system KD (D&K)) is first presented on the basis of KD (D&K)-a synthesized knowledge discovery system based on double-base (database and know...A new structure of ESKD (expert system based on knowledge discovery system KD (D&K)) is first presented on the basis of KD (D&K)-a synthesized knowledge discovery system based on double-base (database and knowledge base) cooperating mechanism. With all new features, ESKD may form a new research direction and provide a great probability for solving the wealth of knowledge in the knowledge base. The general structural frame of ESKD and some sub-systems among ESKD have been described, and the dynamic knowledge base based on double-base cooperating mechanism has been emphased on. According to the result of demonstrative experi- ment, the structure of ESKD is effective and feasible.展开更多
In this paper, the structure characteristics of open complex giant systems are concretely analysed in depth, thus the view and its significance to support the meta synthesis engineering with manifold knowledge models...In this paper, the structure characteristics of open complex giant systems are concretely analysed in depth, thus the view and its significance to support the meta synthesis engineering with manifold knowledge models are clarified. Furthermore, the knowledge based multifaceted modeling methodology for open complex giant systems is emphatically studied. The major points are as follows: (1) nonlinear mechanism and general information partition law; (2) from the symmetry and similarity to the acquisition of construction knowledge; (3) structures for hierarchical and nonhierarchical organizations; (4) the integration of manifold knowledge models; (5) the methodology of knowledge based multifaceted modeling.展开更多
Biological raw data are growing exponentially, providing a large amount of information on what life is. It is believed that potential functions and the rules governing protein behaviors can be revealed from analysis o...Biological raw data are growing exponentially, providing a large amount of information on what life is. It is believed that potential functions and the rules governing protein behaviors can be revealed from analysis on known native structures of proteins. Many knowledge-based potentials for proteins have been proposed. Contrary to most existing review articles which mainly describe technical details and applications of various potential models, the main foci for the discussion here are ideas and concepts involving the construction of potentials, including the relation between free energy and energy, the additivity of potentials of mean force and some key issues in potential construction. Sequence analysis is briefly viewed from an energetic viewpoint.展开更多
In the spinning process, some key process parameters( i. e.,raw material index inputs) have very strong relationship with the quality of finished products. The abnormal changes of these process parameters could result...In the spinning process, some key process parameters( i. e.,raw material index inputs) have very strong relationship with the quality of finished products. The abnormal changes of these process parameters could result in various categories of faulty products. In this paper, a hybrid learning-based model was developed for on-line intelligent monitoring and diagnosis of the spinning process. In the proposed model, a knowledge-based artificial neural network( KBANN) was developed for monitoring the spinning process and recognizing faulty quality categories of yarn. In addition,a rough set( RS)-based rule extraction approach named RSRule was developed to discover the causal relationship between textile parameters and yarn quality. These extracted rules were applied in diagnosis of the spinning process, provided guidelines on improving yarn quality,and were used to construct KBANN. Experiments show that the proposed model significantly improve the learning efficiency, and its prediction precision is improved by about 5. 4% compared with the BP neural network model.展开更多
基金supported by the Major Scientific and Technological Projects of CNPC under grant ZD2019-183-006the National Science and Technology Major Project of China (2016ZX05014002-006)the National Natural Science Foundation of China (42072234,42272180)。
文摘This study endeavors to formulate a comprehensive methodology for establishing a Geological Knowledge Base(GKB)tailored to fracture-cavity reservoir outcrops within the North Tarim Basin.The acquisition of quantitative geological parameters was accomplished through diverse means such as outcrop observations,thin section studies,unmanned aerial vehicle scanning,and high-resolution cameras.Subsequently,a three-dimensional digital outcrop model was generated,and the parameters were standardized.An assessment of traditional geological knowledge was conducted to delineate the knowledge framework,content,and system of the GKB.The basic parameter knowledge was extracted using multiscale fine characterization techniques,including core statistics,field observations,and microscopic thin section analysis.Key mechanism knowledge was identified by integrating trace elements from filling,isotope geochemical tests,and water-rock simulation experiments.Significant representational knowledge was then extracted by employing various methods such as multiple linear regression,neural network technology,and discriminant classification.Subsequently,an analogy study was performed on the karst fracture-cavity system(KFCS)in both outcrop and underground reservoir settings.The results underscored several key findings:(1)Utilization of a diverse range of techniques,including outcrop observations,core statistics,unmanned aerial vehicle scanning,high-resolution cameras,thin section analysis,and electron scanning imaging,enabled the acquisition and standardization of data.This facilitated effective management and integration of geological parameter data from multiple sources and scales.(2)The GKB for fracture-cavity reservoir outcrops,encompassing basic parameter knowledge,key mechanism knowledge,and significant representational knowledge,provides robust data support and systematic geological insights for the intricate and in-depth examination of the genetic mechanisms of fracture-cavity reservoirs.(3)The developmental characteristics of fracturecavities in karst outcrops offer effective,efficient,and accurate guidance for fracture-cavity research in underground karst reservoirs.The outlined construction method of the outcrop geological knowledge base is applicable to various fracture-cavity reservoirs in different layers and regions worldwide.
文摘Objective: Given the unique cultural background, way of life, and physical environment of the Tibetan Plateau, this study aims to investigate the effects of health education using problem-based learning (PBL) approaches on the knowledge, attitude, practice, and coping skills of women with high-risk pregnancies in this region. Methods: 76 high-risk pregnancy cases were enrolled at Tibet’s Linzhi People’s Hospital between September 2023 and April 2024. 30 patients admitted between September 2023 and December 2023 were selected as the control group and were performed with regular patient education. 46 patients admitted between January 2024 and April 2024 were selected as the observation group and were performed regular patient education with problem-based learning approaches. Two groups’ performance on their health knowledge, attitude, practice and coping skills before and after interventions were evaluated, and patient satisfaction were measured at the end of the study. Results: There was no statistical significance (P P P Conclusions: Health education with problem-based learning approaches is worth promoting as it can help high-risk pregnant women in plateau areas develop better health knowledge, attitude and practice and healthier coping skills. Also, it can improve patient sanctification.
文摘In this paper, the knowledge based enterprise is considered as an organism, which possesses a set of capabilities. The organizational structure model of knowledge based enterprise organism is described in order to possess the essential capacity set. A dynamic capacity set is defined and analyzed based on the definition of the growth and development for knowledge based enterprise organism. The structure of the capacity base, a subset of the capacity set, is optimized for different periods of the organism ...
文摘The knowledge representation mode and inference control strategy were analyzed according to the specialties of air-conditioning cooling/heating sources selection. The constructing idea and working procedure for knowledge base and inference engine were proposed while the realization technique of the C language was discussed. An intelligent decision support system (IDSS) model based on such knowledge representation and inference mechanism was developed by domain engineers. The model was verified to have a small kernel and powerful capability in list processing and data driving, which was successfully used in the design of a cooling/heating sources system for a large-sized office building.
文摘QNET-CFD is a thematic network on quality and trust for the industrial applications of Computational Fluid Dynamics (CFD), developed under the European Union R&D program. The main objectives of QNET-CFD were to collect CFD and experimental data in a systematic and quality controlled way and to set the basis for a consistent Knowledge Base in support of CFD guidance and validation. The QNET-CFD activity was organized around six Thematic Areas (TAs) covering the following industry sectors: external aerodynamics; combustion & heat transfer; chemical process, thermal hydraulics and nuclear safety; civil construction & HVAC; environment; turbomachinery internal flows. The main outcome of the QNET-CFD actions is the Knowledge Base (KB) with contains in a user oriented interface, extensive experimental and CFD data for a large number of test cases subdivided into 53 Application Challenges (AC) and 43 Underlying Flow Regimes (UFR). The KB contains, in addition to state-of-the-art reviews for each of the six thematic areas, Best Practice Advice (BPA) in the use of CFD for most of AC. This is considered as a significant contribution form the QNET-CFD activities and it is expected that the level of the thrust and quality in CFD will hereby be improved.
基金Supported by the China National Science and Technology Major Project(2016ZX05014-002,2017ZX05005)Chinese Academy of Sciences Pilot A Special Project(XDA14010205)。
文摘To improve the efficiency and accuracy of carbonate reservoir research,a unified reservoir knowledge base linking geological knowledge management with reservoir research is proposed.The reservoir knowledge base serves high-quality analysis,evaluation,description and geological modeling of reservoirs.The knowledge framework is divided into three categories:technical service standard,technical research method and professional knowledge and cases related to geological objects.In order to build a knowledge base,first of all,it is necessary to form a knowledge classification system and knowledge description standards;secondly,to sort out theoretical understandings and various technical methods for different geologic objects and work out a technical service standard package according to the technical standard;thirdly,to collect typical outcrop and reservoir cases,constantly expand the content of the knowledge base through systematic extraction,sorting and saving,and construct professional knowledge about geological objects.Through the use of encyclopedia based collaborative editing architecture,knowledge construction and sharing can be realized.Geological objects and related attribute parameters can be automatically extracted by using natural language processing(NLP)technology,and outcrop data can be collected by using modern fine measurement technology,to enhance the efficiency of knowledge acquisition,extraction and sorting.In this paper,the geological modeling of fracture-cavity reservoir in the Tarim Basin is taken as an example to illustrate the construction of knowledge base of carbonate reservoir and its application in geological modeling of fracture-cavity carbonate reservoir.
基金Supported by National Natural Science Foundation of China(No.70271002)
文摘Based on the knowledge representation and knowledge reasoning, this paper addresses the creation of the multi-attribute knowledge base on the basis of hybrid knowledge representation, with the help of object-oriented programming language and relational database. Compared with general knowledge base, multi-attribute knowledge base can enhance the ability of knowledge processing and application; integrate the heterogeneous knowledge, such as model, symbol, case-based sample knowledge; and support the whole decision process by integrated reasoning.
文摘The present work deals with the development of an Ontology-Based Knowledge Network of soil/water physicochemical & biological properties (soil/water concepts), derived from ASTM Standard Methods (ASTMi,n) and relevant scientific/applicable references (published papers—PPi,n) to fill up/bridge the gap of the information science between cited Standards and infiltration discipline conceptual vocabulary providing accordingly a dedicated/internal Knowledge Base (KB). This attempt constitutes an innovative approach, since it is based on externalizing domain knowledge in the form of Ontology-Based Knowledge Networks, incorporating standardized methodology in soil engineering. The ontology soil/water concepts (semantics) of the developed network correspond to soil/water physicochemical & biological properties, classified in seven different generations that are distinguished/located in infiltration/percolation process of contaminated water through soil porous media. The interconnections with arcs between corresponding concepts/properties among the consecutive generations are defined by the relationship of dependent and independent variables. All these interconnections are documented according to the below three ways: 1) dependent and independent variables interconnected by using the logical operator “<em>depends on</em>” quoting existent explicit functions and equations;2) dependent and independent variables interconnected by using the logical operator “<em>depends on</em>” quoting produced implicit functions, according to Rayleigh’s method of indices;3) dependent and independent variables interconnected by using the logical operator “<em>related to</em>” based on a logical dependence among the examined nodes-concepts-variables. The aforementioned approach provides significant advantages to semantic web developers and web users by means of prompt knowledge navigation, tracking, retrieval and usage.
基金The National Natural Science Foundation of China(No.61502095).
文摘Aiming at the relation linking task for question answering over knowledge base,especially the multi relation linking task for complex questions,a relation linking approach based on the multi-attention recurrent neural network(RNN)model is proposed,which works for both simple and complex questions.First,the vector representations of questions are learned by the bidirectional long short-term memory(Bi-LSTM)model at the word and character levels,and named entities in questions are labeled by the conditional random field(CRF)model.Candidate entities are generated based on a dictionary,the disambiguation of candidate entities is realized based on predefined rules,and named entities mentioned in questions are linked to entities in knowledge base.Next,questions are classified into simple or complex questions by the machine learning method.Starting from the identified entities,for simple questions,one-hop relations are collected in the knowledge base as candidate relations;for complex questions,two-hop relations are collected as candidates.Finally,the multi-attention Bi-LSTM model is used to encode questions and candidate relations,compare their similarity,and return the candidate relation with the highest similarity as the result of relation linking.It is worth noting that the Bi-LSTM model with one attentions is adopted for simple questions,and the Bi-LSTM model with two attentions is adopted for complex questions.The experimental results show that,based on the effective entity linking method,the Bi-LSTM model with the attention mechanism improves the relation linking effectiveness of both simple and complex questions,which outperforms the existing relation linking methods based on graph algorithm or linguistics understanding.
文摘In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty or not usually influences our knowledge about other components. Some experts may draw such a conclusion that 'if component m 1 is faulty, then component m 2 may be faulty too'. How can we use this experts' knowledge to aid the diagnosis? Based on Kohlas's probabilistic assumption-based reasoning method, we use Bayes networks to solve this problem. We calculate the posterior fault probability of the components in the observation state. The result is reasonable and reflects the effectiveness of the experts' knowledge.
基金supported by National Natural Science Foundation of China(Grant No.51175086)
文摘Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization efficiency and quality, a new knowledge-based real-coded genetic algorithm is proposed. A dual evolution mechanism combining knowledge evolution with genetic algorithm is established to extract, handle and utilize the shallow and deep implicit constraint knowledge to guide the optimal searching of genetic algorithm circularly. Based on this dual evolution mechanism, knowledge evolution and population evolution can be connected by knowledge influence operators to improve the conflgurability of knowledge and genetic operators. Then, the new knowledge-based selection operator, crossover operator and mutation operator are proposed to integrate the optimal process knowledge and domain culture to guide the excavator boom structural optimization. Eight kinds of testing algorithms, which include different genetic operators, arc taken as examples to solve the structural optimization of a medium-sized excavator boom. By comparing the results of optimization, it is shown that the algorithm including all the new knowledge-based genetic operators can more remarkably improve the evolutionary rate and searching ability than other testing algorithms, which demonstrates the effectiveness of knowledge for guiding optimal searching. The proposed knowledge-based genetic algorithm by combining multi-level knowledge evolution with numerical optimization provides a new effective method for solving the complex engineering optimization problem.
基金supported by the National Key Laboratory of ATR(9140C8002010706).
文摘Automatic bridge detection is an important application of SAR images. Differed from the classical CFAR method, a new knowledge-based bridge detection approach is proposed. The method not only uses the backscattering intensity difference between targets and background but also applies the contextual information and spatial relationship between objects. According to bridges' special characteristics and scattering properties in SAR images, the new knowledge-based method includes three processes: river segmentation, potential bridge areas detection and bridge discrimination. The application to AIRSAR data shows that the new method is not sensitive to rivers' shape. Moreover, this method can detect bridges successfully when river segmentation is not very exact and is more robust than the radius projection method.
基金financially supported by the Project of Ministry of Education and Finance of China(Grant Nos.200512 and 201335)the Project of the State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University(Grant No.GKZD010053-10)
文摘Knowledge-Based Engineering (KBE) is introduced into the ship structural design in this paper. From the implementation of KBE, the design solutions for both Rules Design Method (RDM) and Interpolation Design Method (IDM) are generated. The corresponding Finite Element (FE) models are generated. Topological design of the longitudinal structures is studied where the Gaussian Process (GP) is employed to build the surrogate model for FE analysis. Multi-objective optimization methods inspired by Pareto Front are used to reduce the design tank weight and outer surface area simultaneously. Additionally, an enhanced Level Set Method (LSM) which employs implicit algorithm is applied to the topological design of typical bracket plate which is used extensively in ship structures. Two different sets of boundary conditions are considered. The proposed methods show satisfactory efficiency and accuracy.
文摘By the turn of the 21 st century,the significance of knowledge to be the key factor in urban and regional development is well established. However,it has been recently and in only a few studies that attempts have been made to identify the specific mechanism and institutional relationships,through which knowledge-based development actually takes place.This paper builds upon the "Triple Helix Model" (Etzkowitz & Klofsten,2005) where university,business and government have been introduced as the key factors behind any knowledge-based development.It refers to a case study of knowledge-based community development in Australia's Smart State Queensland-and examines the role of the "Triple Helix" in the interaction between local and regional level.It shows the central role of the community as an innovation base for the interaction among the key factors and suggests a promotion for a Quadruple Helix Model where community is as important as business,university and government in the new economy.The paper concludes that knowledge-based development will not promote unless all four factors-community,business,university,government-work together.
文摘This paper studies the linkage problem between the result of high-level synthesis and back-end technology, presents a method of high-level technology mapping based on knowl edge, and studies deeply all of its important links such as knowledge representation, knowledge utility and knowledge acquisition. It includes: (1) present a kind of expanded production about knowledge of circuit structure; (2) present a VHDL-based method to acquire knowledge of tech nology mapping; (3) provide solution control strategy and algorithm of knowledge utility; (4)present a half-automatic maintenance method, which can find redundance and contradiction of knowledge base; (5) present a practical method to embed the algorithm into knowledge system to decrease complexity of knowledge base. A system has been developed and linked with three kinds of technologies, so verified the work of this paper.
文摘Parallel Knowledge Base Machine PKBM95 is a kind of special computer which is designed to improve the inference capability of production systems. Its hardware architecture is a multiprocessor, consisting of one microcomputer and four TRANSPUTERs. We will focus our discussion on the concentration-scattered inference model and the twice-conflict resolution strategy presented in the this paper, as well as the architecture and operating language of PKBM95. According to experiments, they are effective in improving the inference capability of the system.
文摘A new structure of ESKD (expert system based on knowledge discovery system KD (D&K)) is first presented on the basis of KD (D&K)-a synthesized knowledge discovery system based on double-base (database and knowledge base) cooperating mechanism. With all new features, ESKD may form a new research direction and provide a great probability for solving the wealth of knowledge in the knowledge base. The general structural frame of ESKD and some sub-systems among ESKD have been described, and the dynamic knowledge base based on double-base cooperating mechanism has been emphased on. According to the result of demonstrative experi- ment, the structure of ESKD is effective and feasible.
文摘In this paper, the structure characteristics of open complex giant systems are concretely analysed in depth, thus the view and its significance to support the meta synthesis engineering with manifold knowledge models are clarified. Furthermore, the knowledge based multifaceted modeling methodology for open complex giant systems is emphatically studied. The major points are as follows: (1) nonlinear mechanism and general information partition law; (2) from the symmetry and similarity to the acquisition of construction knowledge; (3) structures for hierarchical and nonhierarchical organizations; (4) the integration of manifold knowledge models; (5) the methodology of knowledge based multifaceted modeling.
基金Project supported in part by the National Natural Science Foundation of China(Grant Nos.11175224 and 11121403)
文摘Biological raw data are growing exponentially, providing a large amount of information on what life is. It is believed that potential functions and the rules governing protein behaviors can be revealed from analysis on known native structures of proteins. Many knowledge-based potentials for proteins have been proposed. Contrary to most existing review articles which mainly describe technical details and applications of various potential models, the main foci for the discussion here are ideas and concepts involving the construction of potentials, including the relation between free energy and energy, the additivity of potentials of mean force and some key issues in potential construction. Sequence analysis is briefly viewed from an energetic viewpoint.
基金National Natural Science Foundation of China(No.51175077)
文摘In the spinning process, some key process parameters( i. e.,raw material index inputs) have very strong relationship with the quality of finished products. The abnormal changes of these process parameters could result in various categories of faulty products. In this paper, a hybrid learning-based model was developed for on-line intelligent monitoring and diagnosis of the spinning process. In the proposed model, a knowledge-based artificial neural network( KBANN) was developed for monitoring the spinning process and recognizing faulty quality categories of yarn. In addition,a rough set( RS)-based rule extraction approach named RSRule was developed to discover the causal relationship between textile parameters and yarn quality. These extracted rules were applied in diagnosis of the spinning process, provided guidelines on improving yarn quality,and were used to construct KBANN. Experiments show that the proposed model significantly improve the learning efficiency, and its prediction precision is improved by about 5. 4% compared with the BP neural network model.