Nonlinear equations systems(NESs)are widely used in real-world problems and they are difficult to solve due to their nonlinearity and multiple roots.Evolutionary algorithms(EAs)are one of the methods for solving NESs,...Nonlinear equations systems(NESs)are widely used in real-world problems and they are difficult to solve due to their nonlinearity and multiple roots.Evolutionary algorithms(EAs)are one of the methods for solving NESs,given their global search capabilities and ability to locate multiple roots of a NES simultaneously within one run.Currently,the majority of research on using EAs to solve NESs focuses on transformation techniques and improving the performance of the used EAs.By contrast,problem domain knowledge of NESs is investigated in this study,where we propose the incorporation of a variable reduction strategy(VRS)into EAs to solve NESs.The VRS makes full use of the systems of expressing a NES and uses some variables(i.e.,core variable)to represent other variables(i.e.,reduced variables)through variable relationships that exist in the equation systems.It enables the reduction of partial variables and equations and shrinks the decision space,thereby reducing the complexity of the problem and improving the search efficiency of the EAs.To test the effectiveness of VRS in dealing with NESs,this paper mainly integrates the VRS into two existing state-of-the-art EA methods(i.e.,MONES and DR-JADE)according to the integration framework of the VRS and EA,respectively.Experimental results show that,with the assistance of the VRS,the EA methods can produce better results than the original methods and other compared methods.Furthermore,extensive experiments regarding the influence of different reduction schemes and EAs substantiate that a better EA for solving a NES with more reduced variables tends to provide better performance.展开更多
This paper proposes an approach for functional knowledge representation based on problem reduction,which represents the organization of problem-solving activities in two levels:reduction and reasoning.The former makes...This paper proposes an approach for functional knowledge representation based on problem reduction,which represents the organization of problem-solving activities in two levels:reduction and reasoning.The former makes the functional plans for problem-solving while the latter constructs functional units, called handlers,for executing subproblems designated by these plans.This approach emphasizes that the representation of domain knowledge should be closely combined with(rather than separated from)its use therefore provides a set of reasoning-level primitives to construct handlers and formulate the control strate- gies for executing them.As reduction-level primitives,handlers are used to construct handler-associative networks,which become the executable representation of problem-reduction graphs,in order to realize the problem-solving methods suited to domain features.Besides,handlers and their control slots can be used to focus the attention of knowledge acquisition and reasoning control.展开更多
ESP teachers teaching English for mixed subject -specialist groups meet problems such as selecting teach-ing materials,dealing with the subject matter,and teaching methods.The experience in the ATTSR(Advanced Teacher ...ESP teachers teaching English for mixed subject -specialist groups meet problems such as selecting teach-ing materials,dealing with the subject matter,and teaching methods.The experience in the ATTSR(Advanced Teacher Training in Specialist Reading)project may be a reference point for colleagues whomeet with the same problems.In this paper the author will suggest methods to solve these problems intraining this group:using different subject展开更多
基金This work was supported by the National Natural Science Foundation of China(62073341)in part by the Natural Science Fund for Distinguished Young Scholars of Hunan Province(2019JJ20026).
文摘Nonlinear equations systems(NESs)are widely used in real-world problems and they are difficult to solve due to their nonlinearity and multiple roots.Evolutionary algorithms(EAs)are one of the methods for solving NESs,given their global search capabilities and ability to locate multiple roots of a NES simultaneously within one run.Currently,the majority of research on using EAs to solve NESs focuses on transformation techniques and improving the performance of the used EAs.By contrast,problem domain knowledge of NESs is investigated in this study,where we propose the incorporation of a variable reduction strategy(VRS)into EAs to solve NESs.The VRS makes full use of the systems of expressing a NES and uses some variables(i.e.,core variable)to represent other variables(i.e.,reduced variables)through variable relationships that exist in the equation systems.It enables the reduction of partial variables and equations and shrinks the decision space,thereby reducing the complexity of the problem and improving the search efficiency of the EAs.To test the effectiveness of VRS in dealing with NESs,this paper mainly integrates the VRS into two existing state-of-the-art EA methods(i.e.,MONES and DR-JADE)according to the integration framework of the VRS and EA,respectively.Experimental results show that,with the assistance of the VRS,the EA methods can produce better results than the original methods and other compared methods.Furthermore,extensive experiments regarding the influence of different reduction schemes and EAs substantiate that a better EA for solving a NES with more reduced variables tends to provide better performance.
基金This research was supported by National High-tech Program(863 Program)of P.R.China.
文摘This paper proposes an approach for functional knowledge representation based on problem reduction,which represents the organization of problem-solving activities in two levels:reduction and reasoning.The former makes the functional plans for problem-solving while the latter constructs functional units, called handlers,for executing subproblems designated by these plans.This approach emphasizes that the representation of domain knowledge should be closely combined with(rather than separated from)its use therefore provides a set of reasoning-level primitives to construct handlers and formulate the control strate- gies for executing them.As reduction-level primitives,handlers are used to construct handler-associative networks,which become the executable representation of problem-reduction graphs,in order to realize the problem-solving methods suited to domain features.Besides,handlers and their control slots can be used to focus the attention of knowledge acquisition and reasoning control.
文摘ESP teachers teaching English for mixed subject -specialist groups meet problems such as selecting teach-ing materials,dealing with the subject matter,and teaching methods.The experience in the ATTSR(Advanced Teacher Training in Specialist Reading)project may be a reference point for colleagues whomeet with the same problems.In this paper the author will suggest methods to solve these problems intraining this group:using different subject