期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Controlling the uncertainty in reservoir stochastic simulation 被引量:2
1
作者 Cui Yong Chi Bo +2 位作者 Chen Guo Ouyang Cheng Xia Bairu 《Petroleum Science》 SCIE CAS CSCD 2010年第4期472-476,共5页
Unexpected noise in reservoir stochastic simulation realization may be too high to make the realization useful, especially when there is a lack of hard data. Through discussing the uncertainties, we present two ways t... Unexpected noise in reservoir stochastic simulation realization may be too high to make the realization useful, especially when there is a lack of hard data. Through discussing the uncertainties, we present two ways to control the uncertainty ratio that is brought by the algorithm of stochastic simulation. By reasonably reducing the random value of the stochastic simulation result, the unexpected values introduced by the residual that associates with random series can be controlled. Another way when the data disperse unevenly is to control the stochastic simulation order by grouping the points that need to be simulated to make those points which can be simulated by more neighborhood hard data calculated first. Both methods do not go against the core stochastic simulation algorithm. 展开更多
关键词 Reservoir stochastic simulation hard data kriging algorithm RESIDUAL REALIZATION
下载PDF
Variable-fidelity optimization with design space reduction 被引量:2
2
作者 Mohammad Kashif Zahir Gao Zhenghong 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期841-849,共9页
Advanced engineering systems, like aircraft, are defined by tens or even hundreds of design variables. Building an accurate surrogate model for use in such high-dimensional optimization problems is a difficult task ow... Advanced engineering systems, like aircraft, are defined by tens or even hundreds of design variables. Building an accurate surrogate model for use in such high-dimensional optimization problems is a difficult task owing to the curse of dimensionality. This paper presents a new algorithm to reduce the size of a design space to a smaller region of interest allowing a more accurate surrogate model to be generated. The framework requires a set of models of different physical or numerical fidelities. The low-fidelity (LF) model provides physics-based approximation of the high-fidelity (HF) model at a fraction of the computational cost. It is also instrumental in identifying the small region of interest in the design space that encloses the high-fidelity optimum. A surrogate model is then constructed to match the low-fidelity model to the high-fidelity model in the identified region of interest. The optimization process is managed by an update strategy to prevent convergence to false optima. The algorithm is applied on mathematical problems and a two-dimen-sional aerodynamic shape optimization problem in a variable-fidelity context. Results obtained are in excellent agreement with high-fidelity results, even with lower-fidelity flow solvers, while showing up to 39% time savings. 展开更多
关键词 Airfoil optimization Curse of dimensionality Design space reduction Genetic algorithms kriging Surrogate models Surrogate update strategies Variable fidelity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部