In recent times, lithium-ion batteries have been widely used owing to their high energy density, extended cycle lifespan, and minimal self-discharge rate. The design of high-speed rechargeable lithium-ion batteries fa...In recent times, lithium-ion batteries have been widely used owing to their high energy density, extended cycle lifespan, and minimal self-discharge rate. The design of high-speed rechargeable lithium-ion batteries faces a significant challenge owing to the need to increase average electric power during charging. This challenge results from the direct influence of the power level on the rate of chemical reactions occurring in the battery electrodes. In this study, the Taguchi optimization method was used to enhance the average electric power during the charging process of lithium-ion batteries. The Taguchi technique is a statistical strategy that facilitates the systematic and efficient evaluation of numerous experimental variables. The proposed method involved varying seven input factors, including positive electrode thickness, positive electrode material, positive electrode active material volume fraction, negative electrode active material volume fraction, separator thickness, positive current collector thickness, and negative current collector thickness. Three levels were assigned to each control factor to identify the optimal conditions and maximize the average electric power during charging. Moreover, a variance assessment analysis was conducted to validate the results obtained from the Taguchi analysis. The results revealed that the Taguchi method was an eff ective approach for optimizing the average electric power during the charging of lithium-ion batteries. This indicates that the positive electrode material, followed by the separator thickness and the negative electrode active material volume fraction, was key factors significantly infl uencing the average electric power during the charging of lithium-ion batteries response. The identification of optimal conditions resulted in the improved performance of lithium-ion batteries, extending their potential in various applications. Particularly, lithium-ion batteries with average electric power of 16 W and 17 W during charging were designed and simulated in the range of 0-12000 s using COMSOL Multiphysics software. This study efficiently employs the Taguchi optimization technique to develop lithium-ion batteries capable of storing a predetermined average electric power during the charging phase. Therefore, this method enables the battery to achieve complete charging within a specific timeframe tailored to a specificapplication. The implementation of this method can save costs, time, and materials compared with other alternative methods, such as the trial-and-error approach.展开更多
硒(Se)因其较高的体积比容量(3253 mAh cm^(-3))和电子电导率(1×10^(-5)S m^(-1))而成为新一代锂硒(Li-Se)电池储能材料。针对其反应过程中体积膨胀较大、容量衰减较快以及活性物质利用率低等问题,本研究通过在碳布(CC)上生长二维Z...硒(Se)因其较高的体积比容量(3253 mAh cm^(-3))和电子电导率(1×10^(-5)S m^(-1))而成为新一代锂硒(Li-Se)电池储能材料。针对其反应过程中体积膨胀较大、容量衰减较快以及活性物质利用率低等问题,本研究通过在碳布(CC)上生长二维Zn基金属有机框架(ZIF-L)并碳化,设计了一种ZIF-L衍生氮掺杂碳纳米片/硒自支撑复合材料(Se@NC/CC)用于锂硒电池研究。ZIF-L碳化形成的氮掺杂碳纳米片中丰富的微孔结构有效缓解了反应过程中的体积膨胀,掺杂N原子有利于吸附反应过程中的Li2Se,减少活性物质损失。特别地,Se@NC/CC电极中Se和C之间存在强的化学键作用,在一定程度上也可以减少活性物质损失,提高整体性能稳定性。电化学测试表明,在0.5C(1.0C=675 mAh g^(-1))电流密度下,Se@NC/CC电极的初始放电比容量为574 mAh g^(-1),展现出高初始放电比容量;电流密度为2.0C时,初始放电比容量为453.3 mAh g^(-1),循环500圈后仍然具有406.2 mAh g^(-1)的容量;同时也表现出了良好的倍率性能,与文献报道相比有较明显的优势。本研究设计的柔性自支撑硒电极为先进碱金属-硒电池的硒宿主材料设计提供了新的研究思路。展开更多
A novel lightweight three-dimensional (3D) composite anode for a fast-charging] discharging Li-ion battery (LIB) was fabricated entirely using one-dimensional (1D) nanomaterials, i.e., Cu nanowires (CuNWs) and...A novel lightweight three-dimensional (3D) composite anode for a fast-charging] discharging Li-ion battery (LIB) was fabricated entirely using one-dimensional (1D) nanomaterials, i.e., Cu nanowires (CuNWs) and multi-walled C nanotubes (MWCNTs). Because of the excellent electrical conductivity, high-aspect ratio structures, and large surface areas of these nanomaterials, the CuNW-MWCNT composite (CNMC) with 3D structure provides significant advantages regarding the transport pathways for both electrons and ions. As an advanced binder-free anode, a CuNW-MWCNT composite film with a controllable thickness (~ 600 prn) exhibited a considerably low sheet resistance, and internal cell resistance. Furthermore, the random CuNW network with 3D structure acting as a rigid framework not only prevented MWCNT shrinkage and expansion due to aggregation and swelling but also minimized the effect of the volume change during the charge/discharge process. Both a half cell and a full cell of LIBs with the CNMC anode exhibited high specific capacities and Coulombic efficiendes, even at a high current. More importantly, we for the first time overcame the limitation of MWCNTs as anode materials for fast-charging]discharging LIBs (both half cells and full cells) by employing CuNWs, and the resulting anode can be applied to flexible LIBs. This innovative anode structure can lead to the development of ultrafast chargeable LIBs for electric vehides.展开更多
文摘In recent times, lithium-ion batteries have been widely used owing to their high energy density, extended cycle lifespan, and minimal self-discharge rate. The design of high-speed rechargeable lithium-ion batteries faces a significant challenge owing to the need to increase average electric power during charging. This challenge results from the direct influence of the power level on the rate of chemical reactions occurring in the battery electrodes. In this study, the Taguchi optimization method was used to enhance the average electric power during the charging process of lithium-ion batteries. The Taguchi technique is a statistical strategy that facilitates the systematic and efficient evaluation of numerous experimental variables. The proposed method involved varying seven input factors, including positive electrode thickness, positive electrode material, positive electrode active material volume fraction, negative electrode active material volume fraction, separator thickness, positive current collector thickness, and negative current collector thickness. Three levels were assigned to each control factor to identify the optimal conditions and maximize the average electric power during charging. Moreover, a variance assessment analysis was conducted to validate the results obtained from the Taguchi analysis. The results revealed that the Taguchi method was an eff ective approach for optimizing the average electric power during the charging of lithium-ion batteries. This indicates that the positive electrode material, followed by the separator thickness and the negative electrode active material volume fraction, was key factors significantly infl uencing the average electric power during the charging of lithium-ion batteries response. The identification of optimal conditions resulted in the improved performance of lithium-ion batteries, extending their potential in various applications. Particularly, lithium-ion batteries with average electric power of 16 W and 17 W during charging were designed and simulated in the range of 0-12000 s using COMSOL Multiphysics software. This study efficiently employs the Taguchi optimization technique to develop lithium-ion batteries capable of storing a predetermined average electric power during the charging phase. Therefore, this method enables the battery to achieve complete charging within a specific timeframe tailored to a specificapplication. The implementation of this method can save costs, time, and materials compared with other alternative methods, such as the trial-and-error approach.
文摘硒(Se)因其较高的体积比容量(3253 mAh cm^(-3))和电子电导率(1×10^(-5)S m^(-1))而成为新一代锂硒(Li-Se)电池储能材料。针对其反应过程中体积膨胀较大、容量衰减较快以及活性物质利用率低等问题,本研究通过在碳布(CC)上生长二维Zn基金属有机框架(ZIF-L)并碳化,设计了一种ZIF-L衍生氮掺杂碳纳米片/硒自支撑复合材料(Se@NC/CC)用于锂硒电池研究。ZIF-L碳化形成的氮掺杂碳纳米片中丰富的微孔结构有效缓解了反应过程中的体积膨胀,掺杂N原子有利于吸附反应过程中的Li2Se,减少活性物质损失。特别地,Se@NC/CC电极中Se和C之间存在强的化学键作用,在一定程度上也可以减少活性物质损失,提高整体性能稳定性。电化学测试表明,在0.5C(1.0C=675 mAh g^(-1))电流密度下,Se@NC/CC电极的初始放电比容量为574 mAh g^(-1),展现出高初始放电比容量;电流密度为2.0C时,初始放电比容量为453.3 mAh g^(-1),循环500圈后仍然具有406.2 mAh g^(-1)的容量;同时也表现出了良好的倍率性能,与文献报道相比有较明显的优势。本研究设计的柔性自支撑硒电极为先进碱金属-硒电池的硒宿主材料设计提供了新的研究思路。
文摘A novel lightweight three-dimensional (3D) composite anode for a fast-charging] discharging Li-ion battery (LIB) was fabricated entirely using one-dimensional (1D) nanomaterials, i.e., Cu nanowires (CuNWs) and multi-walled C nanotubes (MWCNTs). Because of the excellent electrical conductivity, high-aspect ratio structures, and large surface areas of these nanomaterials, the CuNW-MWCNT composite (CNMC) with 3D structure provides significant advantages regarding the transport pathways for both electrons and ions. As an advanced binder-free anode, a CuNW-MWCNT composite film with a controllable thickness (~ 600 prn) exhibited a considerably low sheet resistance, and internal cell resistance. Furthermore, the random CuNW network with 3D structure acting as a rigid framework not only prevented MWCNT shrinkage and expansion due to aggregation and swelling but also minimized the effect of the volume change during the charge/discharge process. Both a half cell and a full cell of LIBs with the CNMC anode exhibited high specific capacities and Coulombic efficiendes, even at a high current. More importantly, we for the first time overcame the limitation of MWCNTs as anode materials for fast-charging]discharging LIBs (both half cells and full cells) by employing CuNWs, and the resulting anode can be applied to flexible LIBs. This innovative anode structure can lead to the development of ultrafast chargeable LIBs for electric vehides.