期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
An Accurate Numerical Integrator for the Solution of Black Scholes Financial Model Equation
1
作者 Iyakino P. Akpan Johnson O. Fatokun 《American Journal of Computational Mathematics》 2015年第3期283-290,共8页
In this paper the Black Scholes differential equation is transformed into a parabolic heat equation by appropriate change in variables. The transformed equation is semi-discretized by the Method of Lines (MOL). The ev... In this paper the Black Scholes differential equation is transformed into a parabolic heat equation by appropriate change in variables. The transformed equation is semi-discretized by the Method of Lines (MOL). The evolving system of ordinary differential equations (ODEs) is integrated numerically by an L-stable trapezoidal-like integrator. Results show accuracy of relative maximum error of order 10–10. 展开更多
关键词 BlACK Scholes equation partial differential equations (PDEs) Method of lines (MOl) l-Stable Trapezoidal-like INTEGRATOR
下载PDF
基于Frobenius定理的Hamilton-Jacobi方法的几何解释 被引量:2
2
作者 肖静 刘畅 王勇 《应用数学和力学》 CSCD 北大核心 2017年第6期708-714,共7页
给出了一阶偏微分方程特征微分方程组的一种基于Frobenius定理的几何解释,通过研究发现根据Frobenius定理可以从一阶偏微分方程直接得到其特征微分方程组;在此基础上说明如何利用几何方法从Hamilton正则方程出发找到与之对应的Hamilton-... 给出了一阶偏微分方程特征微分方程组的一种基于Frobenius定理的几何解释,通过研究发现根据Frobenius定理可以从一阶偏微分方程直接得到其特征微分方程组;在此基础上说明如何利用几何方法从Hamilton正则方程出发找到与之对应的Hamilton-Jacobi方程.这种方法可以被用于非保守或非完整Hamilton力学问题的研究中,经典Hamilton-Jacobi方法是这种方法的一个特例. 展开更多
关键词 Hamilton-Jacobi理论 一阶偏微分方程 Frobenius定理
下载PDF
中立型随机比例微分方程部分截断Euler-Maruyama数值解的收敛性分析
3
作者 肖渊琰 尤苏蓉 《东华大学学报(自然科学版)》 CAS 北大核心 2022年第5期138-146,共9页
针对具有高度非线性系数的中立型随机比例微分方程的数值解问题,提出部分截断Euler-Maruyama(EM)数值解格式。在系数满足局部Lipschitz条件、Khasminskii型条件和压缩映射条件下,利用It o^公式和若干不等式证明数值解的强收敛性和L p有... 针对具有高度非线性系数的中立型随机比例微分方程的数值解问题,提出部分截断Euler-Maruyama(EM)数值解格式。在系数满足局部Lipschitz条件、Khasminskii型条件和压缩映射条件下,利用It o^公式和若干不等式证明数值解的强收敛性和L p有界性。 展开更多
关键词 中立型随机比例微分方程 部分截断EM数值方法 l p有界 收敛性
下载PDF
The Mathematical and Physical Theory of Rational Human Intelligence: Complete Empirical-Digital Properties;Full Electrochemical-Mechanical Model (Part I: Mathematical Foundations)
4
作者 Leo Depuydt 《Advances in Pure Mathematics》 2013年第5期491-561,共71页
The design of this paper is to present the first installment of a complete and final theory of rational human intelligence. The theory is mathematical in the strictest possible sense. The mathematics involved is stric... The design of this paper is to present the first installment of a complete and final theory of rational human intelligence. The theory is mathematical in the strictest possible sense. The mathematics involved is strictly digital—not quantitative in the manner that what is usually thought of as mathematics is quantitative. It is anticipated at this time that the exclusively digital nature of rational human intelligence exhibits four flavors of digitality, apparently no more, and that each flavor will require a lengthy study in its own right. (For more information,please refer to the PDF.) 展开更多
关键词 Artificial INTEllIGENCE Boolean AlGEBRA Boole’s AlGEBRA Black Box Theories Brain Science Cognition Cognitive Science Digital MATHEMATICS Electricity and Magnetism J.-l. lagrange and partial differential equations J. C. Maxwell’s Theory of Electromagnetism Neuroscience Non-Quantitative and Quantitative MATHEMATICS Physics RATIONAl Human INTEllIGENCE COMPlETE Theory of RATIONAl Thought and language
下载PDF
Adaptive Finite Element Modeling Techniques for the Poisson-Boltzmann Equation 被引量:1
5
作者 M.Holst J.A.McCammon +2 位作者 Z.Yu Y.C.Zhou Y.Zhu 《Communications in Computational Physics》 SCIE 2012年第1期179-214,共36页
We consider the design of an effective and reliable adaptive finite element method(AFEM)for the nonlinear Poisson-Boltzmann equation(PBE).We first examine the two-term regularization technique for the continuous probl... We consider the design of an effective and reliable adaptive finite element method(AFEM)for the nonlinear Poisson-Boltzmann equation(PBE).We first examine the two-term regularization technique for the continuous problem recently proposed by Chen,Holst and Xu based on the removal of the singular electrostatic potential inside biomolecules;this technique made possible the development of the first complete solution and approximation theory for the Poisson-Boltzmann equation,the first provably convergent discretization and also allowed for the development of a provably convergent AFEM.However,in practical implementation,this two-term regularization exhibits numerical instability.Therefore,we examine a variation of this regularization technique which can be shown to be less susceptible to such instability.We establish a priori estimates and other basic results for the continuous regularized problem,as well as for Galerkin finite element approximations.We show that the new approach produces regularized continuous and discrete problemswith the samemathematical advantages of the original regularization.We then design an AFEM scheme for the new regularized problem and show that the resulting AFEM scheme is accurate and reliable,by proving a contraction result for the error.This result,which is one of the first results of this type for nonlinear elliptic problems,is based on using continuous and discrete a priori L¥estimates.To provide a high-quality geometric model as input to the AFEM algorithm,we also describe a class of feature-preserving adaptive mesh generation algorithms designed specifically for constructing meshes of biomolecular structures,based on the intrinsic local structure tensor of the molecular surface.All of the algorithms described in the article are implemented in the Finite Element Toolkit(FETK),developed and maintained at UCSD.The stability advantages of the new regularization scheme are demonstrated with FETK through comparisons with the original regularization approach for a model problem.The convergence and accuracy of the overall AFEMalgorithmis also illustrated by numerical approximation of electrostatic solvation energy for an insulin protein. 展开更多
关键词 Poisson-Boltzmann equation semi-linear partial differential equations supercritical nonlinearity singularity a priori l¥estimates existence uniqueness WEll-POSEDNESS Galerkin methods discrete a priori l¥estimates quasi-optimal a priori error estimates adaptive finite methods contraction convergence OPTIMAlITY surface and volume mesh generation mesh improvement and decimation.
原文传递
拉格朗日一阶偏微分方程完全积分概念探源
6
作者 贾小勇 袁敏 《自然科学史研究》 CSCD 北大核心 2008年第4期485-497,共13页
在分析、比较欧拉和拉格朗日完全积分定义的基础上,依据原始文献,重点考究了拉格朗日重新定义偏微分方程完全积分的原因和动机。从微观角度看,拉格朗日基于欧拉的定义,在用"常数变易法"探讨一阶偏微分方程积分的过程中受到启... 在分析、比较欧拉和拉格朗日完全积分定义的基础上,依据原始文献,重点考究了拉格朗日重新定义偏微分方程完全积分的原因和动机。从微观角度看,拉格朗日基于欧拉的定义,在用"常数变易法"探讨一阶偏微分方程积分的过程中受到启发,萌生了其积分"完全性"的新思想,并把这种新思想运用于常微分方程的研究,成功解释了奇解,在此基础上提出了一阶偏微分方程完全积分的新定义,因此拉格朗日完全积分的新定义是"常数变易法"和微分方程奇解现象共同诱发的产物。从宏观角度看,拉格朗日完全积分的新定义是追求方程一般性解法的集中体现。 展开更多
关键词 拉格朗日 一阶偏微分方程 完全积分 常数变易法 奇解
下载PDF
基于深度学习的偏微分方程求解方法 被引量:2
7
作者 毛超利 《智能物联技术》 2021年第5期18-23,30,共7页
本文提出了一种基于深度学习的偏微分方程求解方法。该方法把偏微分方程的解看作函数变量关于自变量的非线性关系,利用深度神经网络表达该非线性关系,其不断逼近原偏微分方程解的过程是无约束最优化问题,可借助拟牛顿算法L-BFGS来求解... 本文提出了一种基于深度学习的偏微分方程求解方法。该方法把偏微分方程的解看作函数变量关于自变量的非线性关系,利用深度神经网络表达该非线性关系,其不断逼近原偏微分方程解的过程是无约束最优化问题,可借助拟牛顿算法L-BFGS来求解。针对三种典型的偏微分方程,使用有限差分格式和本文方法分别求解,结果对比表明,本文方法计算精度较好,不会引入人工粘性,且具有普适性。此外,本文研究了神经网络隐藏层层数和每层神经元个数对计算精度的影响。 展开更多
关键词 偏微分方程 深度学习 无约束最优化 l-BFGS算法
下载PDF
A new method of solving the coefficient inverse problem 被引量:2
8
作者 Ming-gen CUI Ying-zhen LIN Li-hong YANG 《Science China Mathematics》 SCIE 2007年第4期561-572,共12页
This paper is concerned with the new method for solving the coefficient inverse problem in the reproducing kernel space. It is different from the previous studies. This method gives accurate results and shows that it ... This paper is concerned with the new method for solving the coefficient inverse problem in the reproducing kernel space. It is different from the previous studies. This method gives accurate results and shows that it is valid by the numerical example. 展开更多
关键词 partial differential equation coefficient inverse problem reproducing kernel space 35l70
原文传递
An L_2-theory for a class of SPDEs driven by Lévy processes
9
作者 CHEN Zhen-Qing KIM KyeongHun 《Science China Mathematics》 SCIE 2012年第11期2233-2246,共14页
In this paper we present an L2-theory for a class of stochastic partial differential equations driven by Levy processes. The coefficients of the equations are random functions depending on time and space variables, an... In this paper we present an L2-theory for a class of stochastic partial differential equations driven by Levy processes. The coefficients of the equations are random functions depending on time and space variables, and no smoothness assumption of the coefficients is assumed. 展开更多
关键词 stochastic parabolic partial differential equations levy processes l2-theory
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部