In the medical computer tomography (CT) field, total variation (TV), which is the l1-norm of the discrete gradient transform (DGT), is widely used as regularization based on the compressive sensing (CS) theory...In the medical computer tomography (CT) field, total variation (TV), which is the l1-norm of the discrete gradient transform (DGT), is widely used as regularization based on the compressive sensing (CS) theory. To overcome the TV model's disadvantageous tendency of uniformly penalizing the image gradient and over smoothing the low-contrast structures, an iterative algorithm based on the l0-norm optimization of the DGT is proposed. In order to rise to the challenges introduced by the l0-norm DGT, the algorithm uses a pseudo-inverse transform of DGT and adapts an iterative hard thresholding (IHT) algorithm, whose convergence and effective efficiency have been theoretically proven. The simulation demonstrates our conclusions and indicates that the algorithm proposed in this paper can obviously improve the reconstruction quality.展开更多
To improve the identification capability of AP algorithm in time-varying sparse system, we propose a block parallel l_0-SWL-DCD-AP algorithm in this paper. In the proposed algorithm, we first introduce the l_0-norm co...To improve the identification capability of AP algorithm in time-varying sparse system, we propose a block parallel l_0-SWL-DCD-AP algorithm in this paper. In the proposed algorithm, we first introduce the l_0-norm constraint to promote its application for sparse system. Second, we use the shrinkage denoising method to improve its track ability. Third, we adopt the widely linear processing to take advantage of the non-circular properties of communication signals. Last, to reduce the high computational complexity and make it easy to implemented, we utilize the dichotomous coordinate descent(DCD) iterations and the parallel processing to deal with the tapweight update in the proposed algorithm. To verify the convergence condition of the proposed algorithm, we also analyze its steadystate behavior. Several simulation are done and results show that the proposed algorithm can achieve a faster convergence speed and a lower steady-state misalignment than similar APA-type algorithm. When apply the proposed algorithm in the decision feedback equalizer(DFE), the bite error rate(BER) decreases obviously.展开更多
Least-squares migration (LSM) is applied to image subsurface structures and lithology by minimizing the objective function of the observed seismic and reverse-time migration residual data of various underground refl...Least-squares migration (LSM) is applied to image subsurface structures and lithology by minimizing the objective function of the observed seismic and reverse-time migration residual data of various underground reflectivity models. LSM reduces the migration artifacts, enhances the spatial resolution of the migrated images, and yields a more accurate subsurface reflectivity distribution than that of standard migration. The introduction of regularization constraints effectively improves the stability of the least-squares offset. The commonly used regularization terms are based on the L2-norm, which smooths the migration results, e.g., by smearing the reflectivities, while providing stability. However, in exploration geophysics, reflection structures based on velocity and density are generally observed to be discontinuous in depth, illustrating sparse reflectance. To obtain a sparse migration profile, we propose the super-resolution least-squares Kirchhoff prestack depth migration by solving the L0-norm-constrained optimization problem. Additionally, we introduce a two-stage iterative soft and hard thresholding algorithm to retrieve the super-resolution reflectivity distribution. Further, the proposed algorithm is applied to complex synthetic data. Furthermore, the sensitivity of the proposed algorithm to noise and the dominant frequency of the source wavelet was evaluated. Finally, we conclude that the proposed method improves the spatial resolution and achieves impulse-like reflectivity distribution and can be applied to structural interpretations and complex subsurface imaging.展开更多
文摘In the medical computer tomography (CT) field, total variation (TV), which is the l1-norm of the discrete gradient transform (DGT), is widely used as regularization based on the compressive sensing (CS) theory. To overcome the TV model's disadvantageous tendency of uniformly penalizing the image gradient and over smoothing the low-contrast structures, an iterative algorithm based on the l0-norm optimization of the DGT is proposed. In order to rise to the challenges introduced by the l0-norm DGT, the algorithm uses a pseudo-inverse transform of DGT and adapts an iterative hard thresholding (IHT) algorithm, whose convergence and effective efficiency have been theoretically proven. The simulation demonstrates our conclusions and indicates that the algorithm proposed in this paper can obviously improve the reconstruction quality.
基金supported by the National Natural Science Foundation of China (Grant No. 61471138, 50909029 and 61531012)Program of International S\&T Cooperation (Grant No. 2013DFR20050)+1 种基金the Defense Industrial Technology Development Program (Grant No. B2420132004)the Acoustic Science and Technology Laboratory (2014)
文摘To improve the identification capability of AP algorithm in time-varying sparse system, we propose a block parallel l_0-SWL-DCD-AP algorithm in this paper. In the proposed algorithm, we first introduce the l_0-norm constraint to promote its application for sparse system. Second, we use the shrinkage denoising method to improve its track ability. Third, we adopt the widely linear processing to take advantage of the non-circular properties of communication signals. Last, to reduce the high computational complexity and make it easy to implemented, we utilize the dichotomous coordinate descent(DCD) iterations and the parallel processing to deal with the tapweight update in the proposed algorithm. To verify the convergence condition of the proposed algorithm, we also analyze its steadystate behavior. Several simulation are done and results show that the proposed algorithm can achieve a faster convergence speed and a lower steady-state misalignment than similar APA-type algorithm. When apply the proposed algorithm in the decision feedback equalizer(DFE), the bite error rate(BER) decreases obviously.
基金supported by the National Natural Science Foundation of China(No.41422403)
文摘Least-squares migration (LSM) is applied to image subsurface structures and lithology by minimizing the objective function of the observed seismic and reverse-time migration residual data of various underground reflectivity models. LSM reduces the migration artifacts, enhances the spatial resolution of the migrated images, and yields a more accurate subsurface reflectivity distribution than that of standard migration. The introduction of regularization constraints effectively improves the stability of the least-squares offset. The commonly used regularization terms are based on the L2-norm, which smooths the migration results, e.g., by smearing the reflectivities, while providing stability. However, in exploration geophysics, reflection structures based on velocity and density are generally observed to be discontinuous in depth, illustrating sparse reflectance. To obtain a sparse migration profile, we propose the super-resolution least-squares Kirchhoff prestack depth migration by solving the L0-norm-constrained optimization problem. Additionally, we introduce a two-stage iterative soft and hard thresholding algorithm to retrieve the super-resolution reflectivity distribution. Further, the proposed algorithm is applied to complex synthetic data. Furthermore, the sensitivity of the proposed algorithm to noise and the dominant frequency of the source wavelet was evaluated. Finally, we conclude that the proposed method improves the spatial resolution and achieves impulse-like reflectivity distribution and can be applied to structural interpretations and complex subsurface imaging.