Radial functions have become a useful tool in numerical mathematics. On the sphere they have to be identified with the zonal functions. We investigate zonal polynomials with mass concentration at the pole, in the sens...Radial functions have become a useful tool in numerical mathematics. On the sphere they have to be identified with the zonal functions. We investigate zonal polynomials with mass concentration at the pole, in the sense of their L1-norm is attaining the minimum value. Such polynomials satisfy a complicated system of nonlinear e-quations (algebraic if the space dimension is odd, only) and also a singular differential equation of third order. The exact order of decay of the minimum value with respect to the polynomial degree is determined. By our results we can prove that some nodal systems on the sphere, which are defined by a minimum-property, are providing fundamental matrices which are diagonal-dominant or bounded with respect to the ∞-norm, at least, as the polynomial degree tends to infinity.展开更多
The Lt-norm method is one of the widely used matching filters for adaptive multiple subtraction. When the primaries and multiples are mixed together, the L1-norm method might damage the primaries, leading to poor late...The Lt-norm method is one of the widely used matching filters for adaptive multiple subtraction. When the primaries and multiples are mixed together, the L1-norm method might damage the primaries, leading to poor lateral continuity. In this paper, we propose a constrained L1-norm method for adaptive multiple subtraction by introducing the lateral continuity constraint for the estimated primaries. We measure the lateral continuity using prediction-error filters (PEF). We illustrate our method with the synthetic Pluto dataset. The results show that the constrained L1-norm method can simultaneously attenuate the multiples and preserve the primaries.展开更多
Based on exact penalty function, a new neural network for solving the L1-norm optimization problem is proposed. In comparison with Kennedy and Chua’s network(1988), it has better properties.Based on Bandler’s fault ...Based on exact penalty function, a new neural network for solving the L1-norm optimization problem is proposed. In comparison with Kennedy and Chua’s network(1988), it has better properties.Based on Bandler’s fault location method(1982), a new nonlinearly constrained L1-norm problem is developed. It can be solved with less computing time through only one optimization processing. The proposed neural network can be used to solve the analog diagnosis L1 problem. The validity of the proposed neural networks and the fault location L1 method are illustrated by extensive computer simulations.展开更多
In this work,we address the frequency estimation problem of a complex single-tone embedded in the heavy-tailed noise.With the use of the linear prediction(LP)property and l_(1)-norm minimization,a robust frequency est...In this work,we address the frequency estimation problem of a complex single-tone embedded in the heavy-tailed noise.With the use of the linear prediction(LP)property and l_(1)-norm minimization,a robust frequency estimator is developed.Since the proposed method employs the weighted l_(1)-norm on the LP errors,it can be regarded as an extension of the l_(1)-generalized weighted linear predictor.Computer simulations are conducted in the environment of α-stable noise,indicating the superiority of the proposed algorithm,in terms of its robust to outliers and nearly optimal estimation performance.展开更多
In this work, we consider a homotopic principle for solving large-scale and dense l1underdetermined problems and its applications in image processing and classification. We solve the face recognition problem where the...In this work, we consider a homotopic principle for solving large-scale and dense l1underdetermined problems and its applications in image processing and classification. We solve the face recognition problem where the input image contains corrupted and/or lost pixels. The approach involves two steps: first, the incomplete or corrupted image is subject to an inpainting process, and secondly, the restored image is used to carry out the classification or recognition task. Addressing these two steps involves solving large scale l1minimization problems. To that end, we propose to solve a sequence of linear equality constrained multiquadric problems that depends on a regularization parameter that converges to zero. The procedure generates a central path that converges to a point on the solution set of the l1underdetermined problem. In order to solve each subproblem, a conjugate gradient algorithm is formulated. When noise is present in the model, inexact directions are taken so that an approximate solution is computed faster. This prevents the ill conditioning produced when the conjugate gradient is required to iterate until a zero residual is attained.展开更多
In the network security system,intrusion detection plays a significant role.The network security system detects the malicious actions in the network and also conforms the availability,integrity and confidentiality of da...In the network security system,intrusion detection plays a significant role.The network security system detects the malicious actions in the network and also conforms the availability,integrity and confidentiality of data informa-tion resources.Intrusion identification system can easily detect the false positive alerts.If large number of false positive alerts are created then it makes intrusion detection system as difficult to differentiate the false positive alerts from genuine attacks.Many research works have been done.The issues in the existing algo-rithms are more memory space and need more time to execute the transactions of records.This paper proposes a novel framework of network security Intrusion Detection System(IDS)using Modified Frequent Pattern(MFP-Tree)via K-means algorithm.The accuracy rate of Modified Frequent Pattern Tree(MFPT)-K means method infinding the various attacks are Normal 94.89%,for DoS based attack 98.34%,for User to Root(U2R)attacks got 96.73%,Remote to Local(R2L)got 95.89%and Probe attack got 92.67%and is optimal when it is compared with other existing algorithms of K-Means and APRIORI.展开更多
Integrated with sensors,processors,and radio frequency(RF)communication modules,intelligent bearing could achieve the autonomous perception and autonomous decision-making,guarantying the safety and reliability during ...Integrated with sensors,processors,and radio frequency(RF)communication modules,intelligent bearing could achieve the autonomous perception and autonomous decision-making,guarantying the safety and reliability during their use.However,because of the resource limitations of the end device,processors in the intelligent bearing are unable to carry the computational load of deep learning models like convolutional neural network(CNN),which involves a great amount of multiplicative operations.To minimize the computation cost of the conventional CNN,based on the idea of AdderNet,a 1-D adder neural network with a wide first-layer kernel(WAddNN)suitable for bearing fault diagnosis is proposed in this paper.The proposed method uses the l1-norm distance between filters and input features as the output response,thus making the whole network almost free of multiplicative operations.The whole model takes the original signal as the input,uses a wide kernel in the first adder layer to extract features and suppress the high frequency noise,and then uses two layers of small kernels for nonlinear mapping.Through experimental comparison with CNN models of the same structure,WAddNN is able to achieve a similar accuracy as CNN models with significantly reduced computational cost.The proposed model provides a new fault diagnosis method for intelligent bearings with limited resources.展开更多
In recent years,the nuclear norm minimization(NNM)as a convex relaxation of the rank minimization has attracted great research interest.By assigning different weights to singular values,the weighted nuclear norm minim...In recent years,the nuclear norm minimization(NNM)as a convex relaxation of the rank minimization has attracted great research interest.By assigning different weights to singular values,the weighted nuclear norm minimization(WNNM)has been utilized in many applications.However,most of the work on WNNM is combined with the l 2-data-fidelity term,which is under additive Gaussian noise assumption.In this paper,we introduce the L1-WNNM model,which incorporates the l 1-data-fidelity term and the regularization from WNNM.We apply the alternating direction method of multipliers(ADMM)to solve the non-convex minimization problem in this model.We exploit the low rank prior on the patch matrices extracted based on the image non-local self-similarity and apply the L1-WNNM model on patch matrices to restore the image corrupted by impulse noise.Numerical results show that our method can effectively remove impulse noise.展开更多
Based on the range space property (RSP), the equivalent conditions between nonnegative solutions to the partial sparse and the corresponding weighted l1-norm minimization problem are studied in this paper. Different...Based on the range space property (RSP), the equivalent conditions between nonnegative solutions to the partial sparse and the corresponding weighted l1-norm minimization problem are studied in this paper. Different from other conditions based on the spark property, the mutual coherence, the null space property (NSP) and the restricted isometry property (RIP), the RSP- based conditions are easier to be verified. Moreover, the proposed conditions guarantee not only the strong equivalence, but also the equivalence between the two problems. First, according to the foundation of the strict complemenrarity theorem of linear programming, a sufficient and necessary condition, satisfying the RSP of the sensing matrix and the full column rank property of the corresponding sub-matrix, is presented for the unique nonnegative solution to the weighted l1-norm minimization problem. Then, based on this condition, the equivalence conditions between the two problems are proposed. Finally, this paper shows that the matrix with the RSP of order k can guarantee the strong equivalence of the two problems.展开更多
A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conven...A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm.展开更多
High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurat...High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurately represent them is of great significance.A latent factor(LF)model is one of the most popular and successful ways to address this issue.Current LF models mostly adopt L2-norm-oriented Loss to represent an HiDS matrix,i.e.,they sum the errors between observed data and predicted ones with L2-norm.Yet L2-norm is sensitive to outlier data.Unfortunately,outlier data usually exist in such matrices.For example,an HiDS matrix from RSs commonly contains many outlier ratings due to some heedless/malicious users.To address this issue,this work proposes a smooth L1-norm-oriented latent factor(SL-LF)model.Its main idea is to adopt smooth L1-norm rather than L2-norm to form its Loss,making it have both strong robustness and high accuracy in predicting the missing data of an HiDS matrix.Experimental results on eight HiDS matrices generated by industrial applications verify that the proposed SL-LF model not only is robust to the outlier data but also has significantly higher prediction accuracy than state-of-the-art models when they are used to predict the missing data of HiDS matrices.展开更多
We consider efficient methods for the recovery of block sparse signals from underdetermined system of linear equations. We show that if the measurement matrix satisfies the block RIP with δ2s 〈 0.4931, then every bl...We consider efficient methods for the recovery of block sparse signals from underdetermined system of linear equations. We show that if the measurement matrix satisfies the block RIP with δ2s 〈 0.4931, then every block s-sparse signal can be recovered through the proposed mixed l2/ll-minimization approach in the noiseless case and is stably recovered in the presence of noise and mismodeling error. This improves the result of Eldar and Mishali (in IEEE Trans. Inform. Theory 55: 5302-5316, 2009). We also give another sufficient condition on block RIP for such recovery method: 58 〈 0.307.展开更多
文摘Radial functions have become a useful tool in numerical mathematics. On the sphere they have to be identified with the zonal functions. We investigate zonal polynomials with mass concentration at the pole, in the sense of their L1-norm is attaining the minimum value. Such polynomials satisfy a complicated system of nonlinear e-quations (algebraic if the space dimension is odd, only) and also a singular differential equation of third order. The exact order of decay of the minimum value with respect to the polynomial degree is determined. By our results we can prove that some nodal systems on the sphere, which are defined by a minimum-property, are providing fundamental matrices which are diagonal-dominant or bounded with respect to the ∞-norm, at least, as the polynomial degree tends to infinity.
基金This work is sponsored by National Natural Science Foundation of China (No. 40874056), Important National Science & Technology Specific Projects 2008ZX05023-005-004, and the NCET Fund.Acknowledgements The authors are grateful to Liu Yang, and Zhu Sheng-wang for their constructive remarks on this manuscript.
文摘The Lt-norm method is one of the widely used matching filters for adaptive multiple subtraction. When the primaries and multiples are mixed together, the L1-norm method might damage the primaries, leading to poor lateral continuity. In this paper, we propose a constrained L1-norm method for adaptive multiple subtraction by introducing the lateral continuity constraint for the estimated primaries. We measure the lateral continuity using prediction-error filters (PEF). We illustrate our method with the synthetic Pluto dataset. The results show that the constrained L1-norm method can simultaneously attenuate the multiples and preserve the primaries.
基金Supported by Doctoral Special Fund of State Education Commissionthe National Natural Science Foundation of China,Grant No.59477001 and No.59707002
文摘Based on exact penalty function, a new neural network for solving the L1-norm optimization problem is proposed. In comparison with Kennedy and Chua’s network(1988), it has better properties.Based on Bandler’s fault location method(1982), a new nonlinearly constrained L1-norm problem is developed. It can be solved with less computing time through only one optimization processing. The proposed neural network can be used to solve the analog diagnosis L1 problem. The validity of the proposed neural networks and the fault location L1 method are illustrated by extensive computer simulations.
文摘In this work,we address the frequency estimation problem of a complex single-tone embedded in the heavy-tailed noise.With the use of the linear prediction(LP)property and l_(1)-norm minimization,a robust frequency estimator is developed.Since the proposed method employs the weighted l_(1)-norm on the LP errors,it can be regarded as an extension of the l_(1)-generalized weighted linear predictor.Computer simulations are conducted in the environment of α-stable noise,indicating the superiority of the proposed algorithm,in terms of its robust to outliers and nearly optimal estimation performance.
文摘In this work, we consider a homotopic principle for solving large-scale and dense l1underdetermined problems and its applications in image processing and classification. We solve the face recognition problem where the input image contains corrupted and/or lost pixels. The approach involves two steps: first, the incomplete or corrupted image is subject to an inpainting process, and secondly, the restored image is used to carry out the classification or recognition task. Addressing these two steps involves solving large scale l1minimization problems. To that end, we propose to solve a sequence of linear equality constrained multiquadric problems that depends on a regularization parameter that converges to zero. The procedure generates a central path that converges to a point on the solution set of the l1underdetermined problem. In order to solve each subproblem, a conjugate gradient algorithm is formulated. When noise is present in the model, inexact directions are taken so that an approximate solution is computed faster. This prevents the ill conditioning produced when the conjugate gradient is required to iterate until a zero residual is attained.
文摘In the network security system,intrusion detection plays a significant role.The network security system detects the malicious actions in the network and also conforms the availability,integrity and confidentiality of data informa-tion resources.Intrusion identification system can easily detect the false positive alerts.If large number of false positive alerts are created then it makes intrusion detection system as difficult to differentiate the false positive alerts from genuine attacks.Many research works have been done.The issues in the existing algo-rithms are more memory space and need more time to execute the transactions of records.This paper proposes a novel framework of network security Intrusion Detection System(IDS)using Modified Frequent Pattern(MFP-Tree)via K-means algorithm.The accuracy rate of Modified Frequent Pattern Tree(MFPT)-K means method infinding the various attacks are Normal 94.89%,for DoS based attack 98.34%,for User to Root(U2R)attacks got 96.73%,Remote to Local(R2L)got 95.89%and Probe attack got 92.67%and is optimal when it is compared with other existing algorithms of K-Means and APRIORI.
基金support provided by the China National Key Research and Development Program of China under Grant 2019YFB2004300the National Natural Science Foundation of China under Grant 51975065 and 51805051.
文摘Integrated with sensors,processors,and radio frequency(RF)communication modules,intelligent bearing could achieve the autonomous perception and autonomous decision-making,guarantying the safety and reliability during their use.However,because of the resource limitations of the end device,processors in the intelligent bearing are unable to carry the computational load of deep learning models like convolutional neural network(CNN),which involves a great amount of multiplicative operations.To minimize the computation cost of the conventional CNN,based on the idea of AdderNet,a 1-D adder neural network with a wide first-layer kernel(WAddNN)suitable for bearing fault diagnosis is proposed in this paper.The proposed method uses the l1-norm distance between filters and input features as the output response,thus making the whole network almost free of multiplicative operations.The whole model takes the original signal as the input,uses a wide kernel in the first adder layer to extract features and suppress the high frequency noise,and then uses two layers of small kernels for nonlinear mapping.Through experimental comparison with CNN models of the same structure,WAddNN is able to achieve a similar accuracy as CNN models with significantly reduced computational cost.The proposed model provides a new fault diagnosis method for intelligent bearings with limited resources.
基金supported by the National Natural Science Foundation of China under grants U21A20455,61972265,11871348 and 11701388by the Natural Science Foundation of Guangdong Province of China under grant 2020B1515310008by the Educational Commission of Guangdong Province of China under grant 2019KZDZX1007.
文摘In recent years,the nuclear norm minimization(NNM)as a convex relaxation of the rank minimization has attracted great research interest.By assigning different weights to singular values,the weighted nuclear norm minimization(WNNM)has been utilized in many applications.However,most of the work on WNNM is combined with the l 2-data-fidelity term,which is under additive Gaussian noise assumption.In this paper,we introduce the L1-WNNM model,which incorporates the l 1-data-fidelity term and the regularization from WNNM.We apply the alternating direction method of multipliers(ADMM)to solve the non-convex minimization problem in this model.We exploit the low rank prior on the patch matrices extracted based on the image non-local self-similarity and apply the L1-WNNM model on patch matrices to restore the image corrupted by impulse noise.Numerical results show that our method can effectively remove impulse noise.
基金Research supported by the National Natural Science Foundation of China under Grant 61672005
文摘Based on the range space property (RSP), the equivalent conditions between nonnegative solutions to the partial sparse and the corresponding weighted l1-norm minimization problem are studied in this paper. Different from other conditions based on the spark property, the mutual coherence, the null space property (NSP) and the restricted isometry property (RIP), the RSP- based conditions are easier to be verified. Moreover, the proposed conditions guarantee not only the strong equivalence, but also the equivalence between the two problems. First, according to the foundation of the strict complemenrarity theorem of linear programming, a sufficient and necessary condition, satisfying the RSP of the sensing matrix and the full column rank property of the corresponding sub-matrix, is presented for the unique nonnegative solution to the weighted l1-norm minimization problem. Then, based on this condition, the equivalence conditions between the two problems are proposed. Finally, this paper shows that the matrix with the RSP of order k can guarantee the strong equivalence of the two problems.
文摘A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm.
基金supported in part by the National Natural Science Foundation of China(61702475,61772493,61902370,62002337)in part by the Natural Science Foundation of Chongqing,China(cstc2019jcyj-msxmX0578,cstc2019jcyjjqX0013)+1 种基金in part by the Chinese Academy of Sciences“Light of West China”Program,in part by the Pioneer Hundred Talents Program of Chinese Academy of Sciencesby Technology Innovation and Application Development Project of Chongqing,China(cstc2019jscx-fxydX0027)。
文摘High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurately represent them is of great significance.A latent factor(LF)model is one of the most popular and successful ways to address this issue.Current LF models mostly adopt L2-norm-oriented Loss to represent an HiDS matrix,i.e.,they sum the errors between observed data and predicted ones with L2-norm.Yet L2-norm is sensitive to outlier data.Unfortunately,outlier data usually exist in such matrices.For example,an HiDS matrix from RSs commonly contains many outlier ratings due to some heedless/malicious users.To address this issue,this work proposes a smooth L1-norm-oriented latent factor(SL-LF)model.Its main idea is to adopt smooth L1-norm rather than L2-norm to form its Loss,making it have both strong robustness and high accuracy in predicting the missing data of an HiDS matrix.Experimental results on eight HiDS matrices generated by industrial applications verify that the proposed SL-LF model not only is robust to the outlier data but also has significantly higher prediction accuracy than state-of-the-art models when they are used to predict the missing data of HiDS matrices.
基金Supported by National Natural Science Foundation of China (Grant Nos. 11171299 and 91130009)Natural Science Foundation of Zhejiang Province of China (Grant No. Y6090091)
文摘We consider efficient methods for the recovery of block sparse signals from underdetermined system of linear equations. We show that if the measurement matrix satisfies the block RIP with δ2s 〈 0.4931, then every block s-sparse signal can be recovered through the proposed mixed l2/ll-minimization approach in the noiseless case and is stably recovered in the presence of noise and mismodeling error. This improves the result of Eldar and Mishali (in IEEE Trans. Inform. Theory 55: 5302-5316, 2009). We also give another sufficient condition on block RIP for such recovery method: 58 〈 0.307.