期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
Adaptive multiple subtraction using a constrained L1-norm method with lateral continuity 被引量:9
1
作者 Pang Tinghua Lu Wenkai Ma Yongjun 《Applied Geophysics》 SCIE CSCD 2009年第3期241-247,299,300,共9页
The Lt-norm method is one of the widely used matching filters for adaptive multiple subtraction. When the primaries and multiples are mixed together, the L1-norm method might damage the primaries, leading to poor late... The Lt-norm method is one of the widely used matching filters for adaptive multiple subtraction. When the primaries and multiples are mixed together, the L1-norm method might damage the primaries, leading to poor lateral continuity. In this paper, we propose a constrained L1-norm method for adaptive multiple subtraction by introducing the lateral continuity constraint for the estimated primaries. We measure the lateral continuity using prediction-error filters (PEF). We illustrate our method with the synthetic Pluto dataset. The results show that the constrained L1-norm method can simultaneously attenuate the multiples and preserve the primaries. 展开更多
关键词 Multiple attenuation adaptive multiple subtraction l1-norm lateral continuity
下载PDF
A NEURAL-BASED NONLINEAR L_1-NORM OPTIMIZATION ALGORITHM FOR DIAGNOSIS OF NETWORKS* 被引量:8
2
作者 He Yigang (Department of Electrical Engineering, Hunan University, Changsha 410082)Luo Xianjue Qiu Guanyuan(School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049) 《Journal of Electronics(China)》 1998年第4期365-371,共7页
Based on exact penalty function, a new neural network for solving the L1-norm optimization problem is proposed. In comparison with Kennedy and Chua’s network(1988), it has better properties.Based on Bandler’s fault ... Based on exact penalty function, a new neural network for solving the L1-norm optimization problem is proposed. In comparison with Kennedy and Chua’s network(1988), it has better properties.Based on Bandler’s fault location method(1982), a new nonlinearly constrained L1-norm problem is developed. It can be solved with less computing time through only one optimization processing. The proposed neural network can be used to solve the analog diagnosis L1 problem. The validity of the proposed neural networks and the fault location L1 method are illustrated by extensive computer simulations. 展开更多
关键词 FAUlT DIAGNOSIS l1-norm NEURAl OPTIMIZATION
下载PDF
ZONAL SPHERICAL POLYNOMIALS WITH MINIMAL L_1-NORM
3
作者 M. Reimer 《Analysis in Theory and Applications》 1995年第3期22-35,共14页
Radial functions have become a useful tool in numerical mathematics. On the sphere they have to be identified with the zonal functions. We investigate zonal polynomials with mass concentration at the pole, in the sens... Radial functions have become a useful tool in numerical mathematics. On the sphere they have to be identified with the zonal functions. We investigate zonal polynomials with mass concentration at the pole, in the sense of their L1-norm is attaining the minimum value. Such polynomials satisfy a complicated system of nonlinear e-quations (algebraic if the space dimension is odd, only) and also a singular differential equation of third order. The exact order of decay of the minimum value with respect to the polynomial degree is determined. By our results we can prove that some nodal systems on the sphere, which are defined by a minimum-property, are providing fundamental matrices which are diagonal-dominant or bounded with respect to the ∞-norm, at least, as the polynomial degree tends to infinity. 展开更多
关键词 ZONAl SPHERICAl POlYNOMIAlS WITH MINIMAl l1-norm
下载PDF
基于l_1-范数约束的递归互相关熵的稀疏系统辨识 被引量:4
4
作者 周千 马文涛 桂冠 《信号处理》 CSCD 北大核心 2016年第9期1079-1086,共8页
为了有效解决脉冲噪声环境下的稀疏系统辨识(Sparse system identification,SSI)问题,以l1-范数为约束构建稀疏递归互相关熵准则(Recursive maximum correntropy criterion,RMCC)算法来解决脉冲噪声对于辨识性能的影响。结合带遗忘算子... 为了有效解决脉冲噪声环境下的稀疏系统辨识(Sparse system identification,SSI)问题,以l1-范数为约束构建稀疏递归互相关熵准则(Recursive maximum correntropy criterion,RMCC)算法来解决脉冲噪声对于辨识性能的影响。结合带遗忘算子的互相关熵准则和l1-范数作为代价函数,推导出一种递归形式的算法,其相对于传统的最大相关熵算法具有快的收敛速度及小的稳态误差。仿真实验结果表明:该算法对于脉冲噪声干扰环境下的SSI问题具有强的鲁棒性。 展开更多
关键词 互相关熵 l1-范数限制 递归 稀疏系统辨识 脉冲噪声
下载PDF
稀疏L1范数最小二乘支持向量机 被引量:6
5
作者 梁锦锦 吴德 《计算机工程与设计》 CSCD 北大核心 2014年第1期293-296,338,共5页
为了提高最小二乘支持向量机的训练速度,提出一种稀疏最小二乘支持向量机L1SLSSVM。该模型采用权重向量的L1范数控制分类间隔,最小二乘损失函数度量误差。将线性和核空间最小二乘支持向量机的训练归结为同一形式,均转化为仅有部分变量... 为了提高最小二乘支持向量机的训练速度,提出一种稀疏最小二乘支持向量机L1SLSSVM。该模型采用权重向量的L1范数控制分类间隔,最小二乘损失函数度量误差。将线性和核空间最小二乘支持向量机的训练归结为同一形式,均转化为仅有部分变量具非负约束的凸二次规划。对比SVM、LSSVM与SLSSVM的数值实验结果表明,L1SLSSVM具有好的稀疏性、高的分类精度和短的训练时间。 展开更多
关键词 最小二乘支持向量机 稀疏性 l1范数 非负约束 凸二次规划
下载PDF
通信受限下T-S模糊网络控制系统L_(1)动态输出反馈控制 被引量:1
6
作者 齐迹 李艳辉 《东北石油大学学报》 CAS 北大核心 2023年第6期101-111,I0007,I0008,共13页
针对通信受限的非线性网络控制系统,为兼顾系统性能和节约利用网络资源,引入事件触发通信机制(ETCM),利用时延建模方法和并行分布补偿(PDC)技术,将连续控制系统建模为一个采样数据误差依赖的非线性网络化系统模型;构建保守性低的时滞依... 针对通信受限的非线性网络控制系统,为兼顾系统性能和节约利用网络资源,引入事件触发通信机制(ETCM),利用时延建模方法和并行分布补偿(PDC)技术,将连续控制系统建模为一个采样数据误差依赖的非线性网络化系统模型;构建保守性低的时滞依赖和模糊基依赖的Lyapunov-Krasovskii泛函,给出增广系统稳定性和鲁棒性结果,得到鲁棒控制器存在的充分条件,提出一种基于线性矩阵不等式(LMIs)的事件触发参数,以及全局模糊L 1动态输出反馈控制器参数的协同设计方法。采用永磁同步电动机模型仿真验证,结果表明该设计方法可减少网络资源占用,达到闭环控制系统的性能要求。 展开更多
关键词 网络控制系统 T-S模糊模型 通信受限 l_(1)动态输出反馈控制 ETCM
下载PDF
约束非线性l_1问题的极大熵方法 被引量:1
7
作者 崔焕钰 《南京晓庄学院学报》 2002年第4期52-55,共4页
本文给出求解约束非线性l1问题的极大熵方法并证明了其收敛性。给出了极大熵与增广La grange乘子法相结合的算法 ,最后给出一个算例。
关键词 约束非线性l1问题 极大熵方法 增广lagrange乘子法
下载PDF
L_1范数支持向量机在代谢组学中的应用
8
作者 丁国辉 孙建强 +2 位作者 吴俊芳 黄慎 丁义明 《波谱学杂志》 CAS CSCD 北大核心 2015年第1期67-77,共11页
代谢组学是关于生物体内源性代谢物质的整体及其变化规律的科学,也是一个数据密集型的研究领域,由此使得模式识别在代谢数据处理中有重要作用.L1范数支持向量机(L1-Norm Support Vector Machines,L1-norm SVMs)作为在模式识别领域中准... 代谢组学是关于生物体内源性代谢物质的整体及其变化规律的科学,也是一个数据密集型的研究领域,由此使得模式识别在代谢数据处理中有重要作用.L1范数支持向量机(L1-Norm Support Vector Machines,L1-norm SVMs)作为在模式识别领域中准确、稳健的方法,在代谢组学中的应用较少.该文应用L1-norm SVM方法对小鼠感染血吸虫后的代谢数据进行了分析,分析结果显示L1-norm SVM在聚类与特征选择方面具有优势,并表明它在代谢组学领域的应用有着潜力和前景. 展开更多
关键词 模式识别 l1范数支持向量机(l1-norm SVM):正交偏最小二乘(O-PlS)代谢组学 核磁共振(NMR)
下载PDF
Efficient tracker based on sparse coding with Euclidean local structure-based constraint
9
作者 WANG Hongyuan ZHANG Ji CHEN Fuhua 《智能系统学报》 CSCD 北大核心 2016年第1期136-147,共12页
Abstract:Sparse coding(SC)based visual tracking(l1-tracker)is gaining increasing attention,and many related algorithms are developed.In these algorithms,each candidate region is sparsely represented as a set of target... Abstract:Sparse coding(SC)based visual tracking(l1-tracker)is gaining increasing attention,and many related algorithms are developed.In these algorithms,each candidate region is sparsely represented as a set of target templates.However,the structure connecting these candidate regions is usually ignored.Lu proposed an NLSSC-tracker with non-local self-similarity sparse coding to address this issue,which has a high computational cost.In this study,we propose an Euclidean local-structure constraint based sparse coding tracker with a smoothed Euclidean local structure.With this tracker,the optimization procedure is transformed to a small-scale l1-optimization problem,significantly reducing the computational cost.Extensive experimental results on visual tracking demonstrate the eectiveness and efficiency of the proposed algorithm. 展开更多
关键词 euclidean lOCAl-STRUCTURE constraint l1-tracker SPARSE CODING target tracking
下载PDF
基于L1-L1优化算法的HPLC通信信号脉冲噪声抑制方法
10
作者 王景 《通信电源技术》 2023年第23期213-215,219,共4页
在进行信号脉冲的噪声抑制阶段,由于对噪声的估计结果与实际情况偏差较大,导致处理后信号的信噪比较低,为此提出基于L1-L1优化算法的高效液相色谱法(High Performance Liquid Chromatography,HPLC)通信信号脉冲噪声抑制方法。充分考虑... 在进行信号脉冲的噪声抑制阶段,由于对噪声的估计结果与实际情况偏差较大,导致处理后信号的信噪比较低,为此提出基于L1-L1优化算法的高效液相色谱法(High Performance Liquid Chromatography,HPLC)通信信号脉冲噪声抑制方法。充分考虑了脉冲噪声的稀疏性,设置对应稀疏项为脉冲噪声时域采样值的L1范数,利用米德尔顿A类噪声模型作为脉冲噪声的模型,将初始的脉冲噪声估计问题转化为L1-L1问题,引入约束参量,借助软阈值运算的矩阵向量乘法求解噪声参数。在噪声抑制阶段,以估计结果为基准,利用正交匹配追踪(Orthogonal Matching Pursuit,OMP)算法对信号进行重构。在测试结果中,处理后信号的信噪比均达到了19.0 dB以上,对应的提升幅度均在7.0 dB以上。 展开更多
关键词 l1-l1优化算法 高效液相色谱法(HPlC) 脉冲噪声抑制 l1范数 约束参量
下载PDF
Bearings Intelligent Fault Diagnosis by 1-D Adder Neural Networks
11
作者 Jian Tang Chao Wei +3 位作者 Quanchang Li Yinjun Wang Xiaoxi Ding Wenbin Huang 《Journal of Dynamics, Monitoring and Diagnostics》 2022年第3期160-168,共9页
Integrated with sensors,processors,and radio frequency(RF)communication modules,intelligent bearing could achieve the autonomous perception and autonomous decision-making,guarantying the safety and reliability during ... Integrated with sensors,processors,and radio frequency(RF)communication modules,intelligent bearing could achieve the autonomous perception and autonomous decision-making,guarantying the safety and reliability during their use.However,because of the resource limitations of the end device,processors in the intelligent bearing are unable to carry the computational load of deep learning models like convolutional neural network(CNN),which involves a great amount of multiplicative operations.To minimize the computation cost of the conventional CNN,based on the idea of AdderNet,a 1-D adder neural network with a wide first-layer kernel(WAddNN)suitable for bearing fault diagnosis is proposed in this paper.The proposed method uses the l1-norm distance between filters and input features as the output response,thus making the whole network almost free of multiplicative operations.The whole model takes the original signal as the input,uses a wide kernel in the first adder layer to extract features and suppress the high frequency noise,and then uses two layers of small kernels for nonlinear mapping.Through experimental comparison with CNN models of the same structure,WAddNN is able to achieve a similar accuracy as CNN models with significantly reduced computational cost.The proposed model provides a new fault diagnosis method for intelligent bearings with limited resources. 展开更多
关键词 adder neural network convolutional neural network fault diagnosis intelligent bearings l1-norm distance
下载PDF
基于0-1规划的规则中文文件碎片自动拼接技术 被引量:1
12
作者 蓝洋 和亮 《计算机系统应用》 2015年第4期270-273,共4页
为了实现规则中文文件碎片的拼接,研究了规则碎片文件中汉字文本的特征,提出了文件碎片中文本行信息的提取方法,定义了基于L1-norm的碎片边界差异度概念,建立了基于0-1规划的文件碎片拼接模型,并运用聚类分析降低了算法复杂度.与现有同... 为了实现规则中文文件碎片的拼接,研究了规则碎片文件中汉字文本的特征,提出了文件碎片中文本行信息的提取方法,定义了基于L1-norm的碎片边界差异度概念,建立了基于0-1规划的文件碎片拼接模型,并运用聚类分析降低了算法复杂度.与现有同类算法相比,本文的算法无需使用人工干预即可完成正确拼接. 展开更多
关键词 规则碎片拼接 0-1规划 聚类分析 文本特征提取 l1-norm
下载PDF
Robust Latent Factor Analysis for Precise Representation of High-Dimensional and Sparse Data 被引量:5
13
作者 Di Wu Xin Luo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第4期796-805,共10页
High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurat... High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurately represent them is of great significance.A latent factor(LF)model is one of the most popular and successful ways to address this issue.Current LF models mostly adopt L2-norm-oriented Loss to represent an HiDS matrix,i.e.,they sum the errors between observed data and predicted ones with L2-norm.Yet L2-norm is sensitive to outlier data.Unfortunately,outlier data usually exist in such matrices.For example,an HiDS matrix from RSs commonly contains many outlier ratings due to some heedless/malicious users.To address this issue,this work proposes a smooth L1-norm-oriented latent factor(SL-LF)model.Its main idea is to adopt smooth L1-norm rather than L2-norm to form its Loss,making it have both strong robustness and high accuracy in predicting the missing data of an HiDS matrix.Experimental results on eight HiDS matrices generated by industrial applications verify that the proposed SL-LF model not only is robust to the outlier data but also has significantly higher prediction accuracy than state-of-the-art models when they are used to predict the missing data of HiDS matrices. 展开更多
关键词 High-dimensional and sparse matrix l1-norm l2 norm latent factor model recommender system smooth l1-norm
下载PDF
Joint 2D DOA and Doppler frequency estimation for L-shaped array using compressive sensing 被引量:5
14
作者 WANG Shixin ZHAO Yuan +3 位作者 LAILA Ibrahim XIONG Ying WANG Jun TANG Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第1期28-36,共9页
A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conven... A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm. 展开更多
关键词 electronic warfare l-shaped array joint parameter estimation l1-norm minimization Bayesian compressive sensing(CS) pair matching
下载PDF
Generating Cartoon Images from Face Photos with Cycle-Consistent Adversarial Networks 被引量:1
15
作者 Tao Zhang Zhanjie Zhang +2 位作者 Wenjing Jia Xiangjian He Jie Yang 《Computers, Materials & Continua》 SCIE EI 2021年第11期2733-2747,共15页
The generative adversarial network(GAN)is first proposed in 2014,and this kind of network model is machine learning systems that can learn to measure a given distribution of data,one of the most important applications... The generative adversarial network(GAN)is first proposed in 2014,and this kind of network model is machine learning systems that can learn to measure a given distribution of data,one of the most important applications is style transfer.Style transfer is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image.CYCLE-GAN is a classic GAN model,which has a wide range of scenarios in style transfer.Considering its unsupervised learning characteristics,the mapping is easy to be learned between an input image and an output image.However,it is difficult for CYCLE-GAN to converge and generate high-quality images.In order to solve this problem,spectral normalization is introduced into each convolutional kernel of the discriminator.Every convolutional kernel reaches Lipschitz stability constraint with adding spectral normalization and the value of the convolutional kernel is limited to[0,1],which promotes the training process of the proposed model.Besides,we use pretrained model(VGG16)to control the loss of image content in the position of l1 regularization.To avoid overfitting,l1 regularization term and l2 regularization term are both used in the object loss function.In terms of Frechet Inception Distance(FID)score evaluation,our proposed model achieves outstanding performance and preserves more discriminative features.Experimental results show that the proposed model converges faster and achieves better FID scores than the state of the art. 展开更多
关键词 Generative adversarial network spectral normalization lipschitz stability constraint VGG16 l1 regularization term l2 regularization term Frechet inception distance
下载PDF
基于非凸加权L_p范数稀疏误差约束的图像去噪算法 被引量:1
16
作者 徐久成 王楠 +1 位作者 王煜尧 徐战威 《智能系统学报》 CSCD 北大核心 2019年第3期500-507,共8页
图像去噪过程中由于噪声的影响,无法学习到准确的先验知识,因此难以获取较优的稀疏系数。针对该问题,本文提出一种基于非凸加权 lp范数稀疏误差约束的图像去噪算法。该算法将系数求解过程分解为两个子问题,采用广义软阈值算法求解 lp范... 图像去噪过程中由于噪声的影响,无法学习到准确的先验知识,因此难以获取较优的稀疏系数。针对该问题,本文提出一种基于非凸加权 lp范数稀疏误差约束的图像去噪算法。该算法将系数求解过程分解为两个子问题,采用广义软阈值算法求解 lp范数中的稀疏系数,再利用代理算法求解稀疏误差约束中的稀疏系数,根据二者的均值来获取更具鲁棒性的稀疏系数。与当前几种典型的算法进行对比分析,实验结果表明:本文算法不仅具有更高的峰值信噪比(PSNR),而且在运行时间上具有更高的效率,同时在视觉角度上产生了更好的视觉感受。 展开更多
关键词 图像去噪 稀疏表示 稀疏系数 先验知识 l1范数 非凸加权 lP范数 稀疏误差约束 峰值信噪比
下载PDF
Statistical Classification Using the Maximum Function 被引量:1
17
作者 T. Pham-Gia Nguyen D. Nhat Nguyen V. Phong 《Open Journal of Statistics》 2015年第7期665-679,共15页
The maximum of k numerical functions defined on , , by , ??is used here in Statistical classification. Previously, it has been used in Statistical Discrimination [1] and in Clustering [2]. We present first some theore... The maximum of k numerical functions defined on , , by , ??is used here in Statistical classification. Previously, it has been used in Statistical Discrimination [1] and in Clustering [2]. We present first some theoretical results on this function, and then its application in classification using a computer program we have developed. This approach leads to clear decisions, even in cases where the extension to several classes of Fisher’s linear discriminant function fails to be effective. 展开更多
关键词 MAXIMUM DISCRIMINANT Function Pattern Classification NORMAl Distribution BAYES Error l1-norm linear QUADRATIC Space CURVES
下载PDF
覆盖矩阵P的(0,1)-矩阵类u_p(R,S)的结构
18
作者 万宏辉 《华中理工大学学报》 CSCD 北大核心 1991年第4期17-21,共5页
本文研究了覆盖矩阵P的(0,1)-矩阵类U_p(R,S)的结构,给出了U_p(R,S)中恒元的存在性定理.取P=0,即得Ryser关于U(R,S)中恒1的结果.
关键词 矩阵 1 自由1 分块形状 约束1
下载PDF
Association RuleMining Frequent-Pattern-Based Intrusion Detection in Network
19
作者 S.Sivanantham V.Mohanraj +1 位作者 Y.Suresh J.Senthilkumar 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1617-1631,共15页
In the network security system,intrusion detection plays a significant role.The network security system detects the malicious actions in the network and also conforms the availability,integrity and confidentiality of da... In the network security system,intrusion detection plays a significant role.The network security system detects the malicious actions in the network and also conforms the availability,integrity and confidentiality of data informa-tion resources.Intrusion identification system can easily detect the false positive alerts.If large number of false positive alerts are created then it makes intrusion detection system as difficult to differentiate the false positive alerts from genuine attacks.Many research works have been done.The issues in the existing algo-rithms are more memory space and need more time to execute the transactions of records.This paper proposes a novel framework of network security Intrusion Detection System(IDS)using Modified Frequent Pattern(MFP-Tree)via K-means algorithm.The accuracy rate of Modified Frequent Pattern Tree(MFPT)-K means method infinding the various attacks are Normal 94.89%,for DoS based attack 98.34%,for User to Root(U2R)attacks got 96.73%,Remote to Local(R2L)got 95.89%and Probe attack got 92.67%and is optimal when it is compared with other existing algorithms of K-Means and APRIORI. 展开更多
关键词 IDS K-MEANS frequent pattern tree false alert MINING l1-norm
下载PDF
L_1-norm packings from function fields
20
作者 LI Hongli 《Science China Mathematics》 SCIE 2005年第9期1274-1283,共10页
In this paper, we study some packings in a cube, namely, how to pack n points in a cube so as to maximize the minimal distance. The distance is induced by the L1-norm which is analogous to the Hamming distance in codi... In this paper, we study some packings in a cube, namely, how to pack n points in a cube so as to maximize the minimal distance. The distance is induced by the L1-norm which is analogous to the Hamming distance in coding theory. Two constructions with reasonable parameters are obtained, by using some results from a function field including divisor class group, narrow ray class group, and so on. We also present some asymptotic results of the two packings. 展开更多
关键词 l1-norm packing genus class number error-correcting code.
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部