期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
A NEURAL-BASED NONLINEAR L_1-NORM OPTIMIZATION ALGORITHM FOR DIAGNOSIS OF NETWORKS* 被引量:8
1
作者 He Yigang (Department of Electrical Engineering, Hunan University, Changsha 410082)Luo Xianjue Qiu Guanyuan(School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049) 《Journal of Electronics(China)》 1998年第4期365-371,共7页
Based on exact penalty function, a new neural network for solving the L1-norm optimization problem is proposed. In comparison with Kennedy and Chua’s network(1988), it has better properties.Based on Bandler’s fault ... Based on exact penalty function, a new neural network for solving the L1-norm optimization problem is proposed. In comparison with Kennedy and Chua’s network(1988), it has better properties.Based on Bandler’s fault location method(1982), a new nonlinearly constrained L1-norm problem is developed. It can be solved with less computing time through only one optimization processing. The proposed neural network can be used to solve the analog diagnosis L1 problem. The validity of the proposed neural networks and the fault location L1 method are illustrated by extensive computer simulations. 展开更多
关键词 FAUlT DIAGNOSIS l1-norm NEURAl optimization
下载PDF
半参数回归模型非参数分量L_1模估计的最优收敛速度 被引量:1
2
作者 赵选民 孙浩 《纯粹数学与应用数学》 CSCD 1997年第2期6-11,共6页
对半参数回归模型,采用分段多项式逼近非参数函数,构造了参数与非参数分量L1模估计,并获得了非参数分量L1模估计的最优估计收敛速度为Op(n-m+r[2(m+r)+1]).
关键词 半参数回归模型 l_1模估计 最优收敛速度
下载PDF
Robust Latent Factor Analysis for Precise Representation of High-Dimensional and Sparse Data 被引量:5
3
作者 Di Wu Xin Luo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第4期796-805,共10页
High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurat... High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurately represent them is of great significance.A latent factor(LF)model is one of the most popular and successful ways to address this issue.Current LF models mostly adopt L2-norm-oriented Loss to represent an HiDS matrix,i.e.,they sum the errors between observed data and predicted ones with L2-norm.Yet L2-norm is sensitive to outlier data.Unfortunately,outlier data usually exist in such matrices.For example,an HiDS matrix from RSs commonly contains many outlier ratings due to some heedless/malicious users.To address this issue,this work proposes a smooth L1-norm-oriented latent factor(SL-LF)model.Its main idea is to adopt smooth L1-norm rather than L2-norm to form its Loss,making it have both strong robustness and high accuracy in predicting the missing data of an HiDS matrix.Experimental results on eight HiDS matrices generated by industrial applications verify that the proposed SL-LF model not only is robust to the outlier data but also has significantly higher prediction accuracy than state-of-the-art models when they are used to predict the missing data of HiDS matrices. 展开更多
关键词 High-dimensional and sparse matrix l1-norm l2 norm latent factor model recommender system smooth l1-norm
下载PDF
ASYMPTOTICS OF THE “MINIMUM L_1-NORM”ESTIMATES IN A PARTLY LINEAR MODEL
4
作者 SHI Peide LI Guoying(Institute of Systems Science, Academia Sinica, Beijing 100080, China) 《Systems Science and Mathematical Sciences》 SCIE EI CSCD 1994年第1期67-77,共11页
ASYMPTOTICSOFTHE“MINIMUML_1-NORM”ESTIMATESINAPARTLYLINEARMODEL¥SHIPeide;LIGuoying(InstituteofSystemsScience,... ASYMPTOTICSOFTHE“MINIMUML_1-NORM”ESTIMATESINAPARTLYLINEARMODEL¥SHIPeide;LIGuoying(InstituteofSystemsScience,AcademiaSinica,Be... 展开更多
关键词 Partly linear model global RATE of CONVERGENCE PIECEWISE polynomial l1-norm estimates.
原文传递
Asymptotics of the“Minimum L_1-Norm”Estimates in Nonparametric Regression Models
5
作者 Shi Pei-De Cheng Ping Institute of Systems Science Academia Sinica Beijing,100080 China 《Acta Mathematica Sinica,English Series》 SCIE CSCD 1994年第3期276-288,共13页
Consider the nonparametric regression model Y=go(T)+u,where Y is real-valued, u is a random error,T ranges over a nondegenerate compact interval,say[0,1],and go(·)is an unknown regression function,which is m... Consider the nonparametric regression model Y=go(T)+u,where Y is real-valued, u is a random error,T ranges over a nondegenerate compact interval,say[0,1],and go(·)is an unknown regression function,which is m(m≥0)times continuously differentiable and its ruth derivative,g<sub>0</sub><sup>(m)</sup>,satisfies a H■lder condition of order γ(m +γ】1/2).A piecewise polynomial L<sub>1</sub>- norm estimator of go is proposed.Under some regularity conditions including that the random errors are independent but not necessarily have a common distribution,it is proved that the rates of convergence of the piecewise polynomial L<sub>1</sub>-norm estimator are o(n<sup>-2(m+γ)+1/m+γ-1/δ</sup>almost surely and o(n<sup>-2(m+γ)+1/m+γ-δ</sup>)in probability,which can arbitrarily approach the optimal rates of convergence for nonparametric regression,where δ is any number in (0, min((m+γ-1/2)/3,γ)). 展开更多
关键词 Estimates in Nonparametric Regression models Minimum l1-norm
原文传递
EQUIVALENCE BETWEEN NONNEGATIVE SOLUTIONS TO PARTIAL SPARSE AND WEIGHTED l_1-NORM MINIMIZATIONS
6
作者 Xiuqin Tian Zhengshan Dong Wenxing Zhu 《Annals of Applied Mathematics》 2016年第4期380-395,共16页
Based on the range space property (RSP), the equivalent conditions between nonnegative solutions to the partial sparse and the corresponding weighted l1-norm minimization problem are studied in this paper. Different... Based on the range space property (RSP), the equivalent conditions between nonnegative solutions to the partial sparse and the corresponding weighted l1-norm minimization problem are studied in this paper. Different from other conditions based on the spark property, the mutual coherence, the null space property (NSP) and the restricted isometry property (RIP), the RSP- based conditions are easier to be verified. Moreover, the proposed conditions guarantee not only the strong equivalence, but also the equivalence between the two problems. First, according to the foundation of the strict complemenrarity theorem of linear programming, a sufficient and necessary condition, satisfying the RSP of the sensing matrix and the full column rank property of the corresponding sub-matrix, is presented for the unique nonnegative solution to the weighted l1-norm minimization problem. Then, based on this condition, the equivalence conditions between the two problems are proposed. Finally, this paper shows that the matrix with the RSP of order k can guarantee the strong equivalence of the two problems. 展开更多
关键词 compressed sensing sparse optimization range spae proper-ty equivalent condition l0-norm minimization weighted l1-norm minimization
原文传递
THE RATES OF CONVERGENCE OF M-ESTIMATORS FOR PARTLY LINEAR MODELS IN DEPENDENT CASES
7
作者 SHIPEIDE CHENXIRU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1996年第3期301-316,共16页
Consider the partly linear model K = X1& + go(Ti) + ei, where {(Ti, Xi)}T is a strictlystationary Sequence of random variable8, the ei’8 are i.i.d. random errorsl the K’s are realvalued responsest fo is a &v... Consider the partly linear model K = X1& + go(Ti) + ei, where {(Ti, Xi)}T is a strictlystationary Sequence of random variable8, the ei’8 are i.i.d. random errorsl the K’s are realvalued responsest fo is a &vector of parameters, X is a &vector of explanatory variables,Ti is another explanatory variable ranging over a nondegenerate compact interval. Bnd ona segmnt of observations (T1, Xi 1 Y1 ),’’’ f (Tn, X;, Yn), this article investigates the rates ofconvrgence of the M-estimators for Po and go obtained from the minimisation problemwhere H is a space of B-spline functions of order m + 1 and p(-) is a function chosen suitablyUnder some regularity conditions, it is shown that the estimator of go achieves the optimalglobal rate of convergence of estimators for nonparametric regression, and the estdriator offo is asymptotically normal. The M-estimators here include regression quantile estimators,Li-estimators, Lp-norm estimators, Huber’s type M-estimators and usual least squares estimators. Applications of the asymptotic theory to testing the hypothesis H0: A’β0 =β are alsodiscussed, where β is a given vector and A is a known d × do matrix with rank d0. 展开更多
关键词 Partly linear model M-ESTIMATOR l_1-norm estimator B-SPlINE optimal rate of convergence Strictly stationary sequence β-mixing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部