针对在杂波、漏检和非线性情况下,粒子概率假设密度滤波(particle probability hypothesis density filter,P-PHDF)算法估计精度不高、滤波发散及粒子退化等问题,提出了一种基于无迹粒子概率假设密度滤波(unscented particle-PHDF,UP-PH...针对在杂波、漏检和非线性情况下,粒子概率假设密度滤波(particle probability hypothesis density filter,P-PHDF)算法估计精度不高、滤波发散及粒子退化等问题,提出了一种基于无迹粒子概率假设密度滤波(unscented particle-PHDF,UP-PHDF)的序贯融合算法。利用无迹粒子滤波(unscented particle filter,UPF)实现PHDF,由UKF算法得到更好更优的重要性密度函数并从中采样,使粒子的分布更接近多目标概率假设密度分布;另外,为进一步提高滤波算法的性能,实现基于雷达和红外传感器的UP-PHDF序贯融合算法,通过两传感器交替滤波保证目标状态的可观测性。在复杂环境下,仿真结果表明该算法的估计精度和稳定性明显优于单传感器P-PHDF算法。展开更多
针对无人自主车同时定位与地图构建(Simultaneous Localization And Mapping,SLAM)问题,采用随机有限集(Random Finite Set,RFS)方法对环境特征和车辆的位姿进行描述,将SLAM算法涉及到的多路标特征检测、跟踪、识别及相关等问题在一个...针对无人自主车同时定位与地图构建(Simultaneous Localization And Mapping,SLAM)问题,采用随机有限集(Random Finite Set,RFS)方法对环境特征和车辆的位姿进行描述,将SLAM算法涉及到的多路标特征检测、跟踪、识别及相关等问题在一个统一的贝叶斯状态估计框架内表述,从而可以有效地解决后验估计、信息融合等算法严重依赖数据关联结果的问题。同时,为了计算复杂的联合后验分布,解决粒子滤波算法中提议分布选择困难问题,采用序贯蒙特卡罗(Sequential Monte Carlo,SMC)算法为马尔科夫链蒙特卡罗(Markov Chain Monte Carlo,MCMC)采样构建高维提议分布策略,提出了基于PMCMC-RFS(Particle MCMC based RFS)的SLAM问题求解方法。试验结果表明:PMCMC-RFS算法能动态估计感知范围内的特征数量,有效地避免了数据关联问题,从而提高了状态估计性能。展开更多
文摘针对在杂波、漏检和非线性情况下,粒子概率假设密度滤波(particle probability hypothesis density filter,P-PHDF)算法估计精度不高、滤波发散及粒子退化等问题,提出了一种基于无迹粒子概率假设密度滤波(unscented particle-PHDF,UP-PHDF)的序贯融合算法。利用无迹粒子滤波(unscented particle filter,UPF)实现PHDF,由UKF算法得到更好更优的重要性密度函数并从中采样,使粒子的分布更接近多目标概率假设密度分布;另外,为进一步提高滤波算法的性能,实现基于雷达和红外传感器的UP-PHDF序贯融合算法,通过两传感器交替滤波保证目标状态的可观测性。在复杂环境下,仿真结果表明该算法的估计精度和稳定性明显优于单传感器P-PHDF算法。
文摘针对无人自主车同时定位与地图构建(Simultaneous Localization And Mapping,SLAM)问题,采用随机有限集(Random Finite Set,RFS)方法对环境特征和车辆的位姿进行描述,将SLAM算法涉及到的多路标特征检测、跟踪、识别及相关等问题在一个统一的贝叶斯状态估计框架内表述,从而可以有效地解决后验估计、信息融合等算法严重依赖数据关联结果的问题。同时,为了计算复杂的联合后验分布,解决粒子滤波算法中提议分布选择困难问题,采用序贯蒙特卡罗(Sequential Monte Carlo,SMC)算法为马尔科夫链蒙特卡罗(Markov Chain Monte Carlo,MCMC)采样构建高维提议分布策略,提出了基于PMCMC-RFS(Particle MCMC based RFS)的SLAM问题求解方法。试验结果表明:PMCMC-RFS算法能动态估计感知范围内的特征数量,有效地避免了数据关联问题,从而提高了状态估计性能。