期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
鲁棒自适应的机载外辐射源雷达多目标跟踪算法
1
作者 单靖原 卢雨 凌寒羽 《系统工程与电子技术》 EI CSCD 北大核心 2024年第9期2902-2915,共14页
针对未知杂波环境下机载外辐射源雷达的多目标跟踪问题,提出一种鲁棒自适应的标签多伯努利滤波器。首先基于标签多伯努利滤波器算法框架对多目标跟踪问题进行建模,然后针对目标新生参数、杂波参数以及目标检测概率未知的问题,提出采用... 针对未知杂波环境下机载外辐射源雷达的多目标跟踪问题,提出一种鲁棒自适应的标签多伯努利滤波器。首先基于标签多伯努利滤波器算法框架对多目标跟踪问题进行建模,然后针对目标新生参数、杂波参数以及目标检测概率未知的问题,提出采用量测驱动的目标新生模型和基于势均衡多目标多伯努利估计器的在线参数估计方法,最后考虑到机载外辐射源雷达量测的非线性,采用序贯蒙特卡罗方法对所提算法进行实现。实验结果表明,所提滤波器能够利用外辐射源量测准确估计多目标航迹,且在未知杂波环境下的性能可以逼近杂波参数已知的广义标签多伯努利滤波器,鲁棒性更好。 展开更多
关键词 外辐射源雷达 多目标跟踪 鲁棒跟踪 标签多伯努利滤波器 随机有限集
下载PDF
面向方位历程交叉场景的多目标检测前跟踪方法
2
作者 郑策 董超 +2 位作者 郑兵 陈焱琨 贺惠忠 《声学学报》 EI CAS CSCD 北大核心 2024年第5期990-1004,共15页
针对传统先检测后跟踪方法在多目标方位历程交叉时存在轨迹中断或者误跟的问题,提出了一种基于广义标签多伯努利滤波的多目标检测前跟踪方法。该算法直接利用声呐基阵接收数据构造的协方差矩阵作为观测,无需波束形成等预处理技术,构建... 针对传统先检测后跟踪方法在多目标方位历程交叉时存在轨迹中断或者误跟的问题,提出了一种基于广义标签多伯努利滤波的多目标检测前跟踪方法。该算法直接利用声呐基阵接收数据构造的协方差矩阵作为观测,无需波束形成等预处理技术,构建了轨迹新生、消亡、演变及观测过程的概率模型,并通过原理性近似消除了更新步骤的多维积分运算,实现了联合多目标检测、方位跟踪与航迹管理。仿真结果表明,所提算法不仅能够准确估计目标数量,并且在方位历程交叉时也能连续、稳定地的输出多目标方位轨迹,同时在低信噪比(−18 dB)条件下具备较高的跟踪精度。海底线阵试验数据也验证了所提算法性能。 展开更多
关键词 检测前跟踪 阵列信号处理 方位跟踪 标签随机有限集 广义标签多伯努利滤波
下载PDF
基于标签多伯努利跟踪器的对手风险动态评估方法
3
作者 王明阳 刘旭旭 +2 位作者 李裕霖 李溯琪 王佰录 《雷达学报(中英文)》 EI CSCD 北大核心 2024年第1期270-282,共13页
在诸多的军事和民用领域都存在对手目标蓄意入侵我方重要区域从事恶意伤害活动的场景。对手风险评估是基于我方传感器获取的量测数据,在线评估和预测对手行动对我方资产造成的潜在伤害和损失。为了评估随机且动态变化的对手风险,该文提... 在诸多的军事和民用领域都存在对手目标蓄意入侵我方重要区域从事恶意伤害活动的场景。对手风险评估是基于我方传感器获取的量测数据,在线评估和预测对手行动对我方资产造成的潜在伤害和损失。为了评估随机且动态变化的对手风险,该文提出一种基于标签多伯努利(LMB)跟踪器的统计对手风险动态评估方法。首先,在LMB跟踪器的框架下,基于加性模型和乘性模型,分别推导了统计对手风险最小均方误差估计的表达式。其次,针对所涉及的非线性函数积分问题,结合混合高斯近似和抽样近似方法,提出统计对手风险最小均方误差估计的数值计算方法;最后,将统计对手风险估计方法与LMB跟踪器的迭代过程有机结合,可实现入侵的多目标对我方重要资产期望损失的动态在线评估。模拟多个具有杀伤能力的目标攻击我方雷达阵地的场景,利用雷达获取的实时点迹量测数据,验证了提出算法的有效性和性能优势。 展开更多
关键词 对手风险评估 多目标跟踪 标签多伯努利跟踪器 随机集理论 威胁等级评估 态势重建
下载PDF
面向数字孪生的动态数据驱动建模与仿真方法 被引量:45
4
作者 王鹏 杨妹 +2 位作者 祝建成 鞠儒生 李革 《系统工程与电子技术》 EI CSCD 北大核心 2020年第12期2779-2786,共8页
信息物理系统(cyber-physical system,CPS)是支撑信息化和工业化深度融合的综合技术体系,传统的建模与仿真方法难以满足其应用需求。因此,提出面向数字孪生的动态数据驱动建模与仿真方法,通过随机有限集对CPS中的物理实体和传感器进行... 信息物理系统(cyber-physical system,CPS)是支撑信息化和工业化深度融合的综合技术体系,传统的建模与仿真方法难以满足其应用需求。因此,提出面向数字孪生的动态数据驱动建模与仿真方法,通过随机有限集对CPS中的物理实体和传感器进行数据驱动建模,并使用基于贝叶斯推理的预测与校正过程支持数据驱动的仿真模型运行。该方法能够很好地实现数字孪生机制下虚实结合的仿真运行,并实现数据驱动的CPS仿真模型解算,通过以实利虚的方式有效提高了仿真结果的准确性和可信性。最后,通过水面舰艇作战应用案例,验证了该方法的可行性和有效性。 展开更多
关键词 信息物理系统 动态数据驱动仿真 随机有限集 数字孪生
下载PDF
基于无迹粒子PHD滤波的序贯融合算法 被引量:10
5
作者 孟凡彬 郝燕玲 +1 位作者 张崇猛 周卫东 《系统工程与电子技术》 EI CSCD 北大核心 2011年第1期30-34,共5页
针对在杂波、漏检和非线性情况下,粒子概率假设密度滤波(particle probability hypothesis density filter,P-PHDF)算法估计精度不高、滤波发散及粒子退化等问题,提出了一种基于无迹粒子概率假设密度滤波(unscented particle-PHDF,UP-PH... 针对在杂波、漏检和非线性情况下,粒子概率假设密度滤波(particle probability hypothesis density filter,P-PHDF)算法估计精度不高、滤波发散及粒子退化等问题,提出了一种基于无迹粒子概率假设密度滤波(unscented particle-PHDF,UP-PHDF)的序贯融合算法。利用无迹粒子滤波(unscented particle filter,UPF)实现PHDF,由UKF算法得到更好更优的重要性密度函数并从中采样,使粒子的分布更接近多目标概率假设密度分布;另外,为进一步提高滤波算法的性能,实现基于雷达和红外传感器的UP-PHDF序贯融合算法,通过两传感器交替滤波保证目标状态的可观测性。在复杂环境下,仿真结果表明该算法的估计精度和稳定性明显优于单传感器P-PHDF算法。 展开更多
关键词 随机有限集 多目标跟踪 无迹粒子滤波 概率假设密度滤波 序贯融合
下载PDF
机动多目标跟踪中的传感器控制策略的研究 被引量:17
6
作者 陈辉 韩崇昭 《自动化学报》 EI CSCD 北大核心 2016年第4期512-523,共12页
针对机动多目标跟踪中的传感器控制问题,本文提出一种基于信息论的多模型多伯努利滤波器的控制方案.首先,基于随机有限集(Random finite set,RFS)方法给出信息论下的传感器控制的一般方法;其次,本文给出多模型势均衡多目标多伯努利滤波... 针对机动多目标跟踪中的传感器控制问题,本文提出一种基于信息论的多模型多伯努利滤波器的控制方案.首先,基于随机有限集(Random finite set,RFS)方法给出信息论下的传感器控制的一般方法;其次,本文给出多模型势均衡多目标多伯努利滤波器的序贯蒙特卡罗实现形式.此外,提出一种目标导向的多伯努利概率密度的粒子采样方法,并借助该方法近似多目标概率密度,继而利用Bhattacharyya距离求解最终的控制方案.典型机动多目标跟踪问题的仿真应用验证了本文传感器控制方法的有效性. 展开更多
关键词 传感器控制 机动多目标 目标导向 随机有限集
下载PDF
基于多目标均方误差界的多传感器控制算法 被引量:4
7
作者 连峰 侯利明 +1 位作者 刘静 韩崇昭 《自动化学报》 EI CSCD 北大核心 2020年第10期2177-2190,共14页
提出了一种新的基于集中式处理结构的有约束多传感器控制算法.该算法将多目标均方误差界作为传感器控制的代价函数.为了应用信息不等式得到该误差界,2阶最优子模式分配测度被用于度量状态集和其估计集间的误差,并采用δ-广义标签多伯努... 提出了一种新的基于集中式处理结构的有约束多传感器控制算法.该算法将多目标均方误差界作为传感器控制的代价函数.为了应用信息不等式得到该误差界,2阶最优子模式分配测度被用于度量状态集和其估计集间的误差,并采用δ-广义标签多伯努利滤波器执行多目标Bayes递推.混合罚函数法和复合形法被用来降低求解该有约束优化问题的计算量.仿真结果表明对于由多个不同观测性能传感器组成的带约束条件的控制系统,本方法的跟踪精度显著优于柯西–施瓦茨散度法;并且当传感器个数较多时,混合罚函数和复合形法的计算时间相比穷尽搜索法显著缩短而跟踪精度损失很小. 展开更多
关键词 多传感器控制 标签随机有限集 多目标跟踪 贝叶斯估计 误差界
下载PDF
基于ET-PHD滤波器和变分贝叶斯近似的扩展目标跟踪算法 被引量:6
8
作者 何祥宇 李静 +1 位作者 杨数强 夏玉杰 《计算机应用》 CSCD 北大核心 2020年第12期3701-3706,共6页
针对未知测量噪声协方差情况下的多扩展目标跟踪问题,利用扩展目标概率假设密度(ET-PHD)滤波器和变分贝叶斯(VB)近似理论,提出了一种标准ET-PHD滤波器的扩展方法及其解析的实现方法。首先,根据标准ETPHD滤波器的目标状态方程和测量方程... 针对未知测量噪声协方差情况下的多扩展目标跟踪问题,利用扩展目标概率假设密度(ET-PHD)滤波器和变分贝叶斯(VB)近似理论,提出了一种标准ET-PHD滤波器的扩展方法及其解析的实现方法。首先,根据标准ETPHD滤波器的目标状态方程和测量方程,定义了目标状态和测量噪声协方差的增广状态变量及二者的联合转移函数;然后,根据标准ET-PHD滤波器,构建了扩展的ET-PHD滤波器的预测和更新公式;最后,在线性高斯假设的条件下,利用高斯和逆伽马(IG)混合分布表示目标的联合后验强度函数,从而给出了扩展ET-PHD滤波器的解析实现。仿真结果表明:所提算法能提供可靠的跟踪结果,可有效地处理未知测量噪声协方差环境中的多扩展目标跟踪问题。 展开更多
关键词 扩展目标跟踪 概率假设密度 随机有限集 变分贝叶斯 噪声协方差
下载PDF
基于PHD滤波和数据关联的多目标跟踪 被引量:6
9
作者 谭顺成 王国宏 +1 位作者 王娜 贾舒宜 《系统工程与电子技术》 EI CSCD 北大核心 2011年第4期734-737,共4页
针对杂波环境下的多目标跟踪,概率假设密度(probability hypothesis density,PHD)滤波不能提供目标航迹信息的问题,提出一种基于PHD滤波和数据关联的多目标跟踪方法。利用PHD滤波消除杂波并得到各个时刻的目标个数和目标状态估计。将PH... 针对杂波环境下的多目标跟踪,概率假设密度(probability hypothesis density,PHD)滤波不能提供目标航迹信息的问题,提出一种基于PHD滤波和数据关联的多目标跟踪方法。利用PHD滤波消除杂波并得到各个时刻的目标个数和目标状态估计。将PHD滤波的结果重新定义为量测数据,通过数据关联进一步消除虚警和漏警并给出目标航迹。仿真结果表明,该算法可以在有效地提高杂波环境下多目标跟踪精度的同时提供各目标航迹信息。 展开更多
关键词 概率假设密度 数据关联 多目标跟踪 随机有限集 最近邻域标准滤波器
下载PDF
基于边缘卡尔曼滤波的GM-PHD多目标被动跟踪算法 被引量:5
10
作者 曲长文 冯奇 +1 位作者 毛宇 周强 《计算机工程》 CAS CSCD 北大核心 2018年第7期279-284,共6页
针对杂波干扰条件下,非线性、个数时变的多目标被动跟踪问题,提出一种基于边缘卡尔曼滤波的高斯混合概率假设密度(PHD)滤波算法。采用边缘化变换计算目标状态的概率分布特性,获得目标状态及其协方差矩阵估计的闭式解,解决目标模型非线... 针对杂波干扰条件下,非线性、个数时变的多目标被动跟踪问题,提出一种基于边缘卡尔曼滤波的高斯混合概率假设密度(PHD)滤波算法。采用边缘化变换计算目标状态的概率分布特性,获得目标状态及其协方差矩阵估计的闭式解,解决目标模型非线性问题。利用量测信息生成新生目标强度,使滤波器具备对观测空间任意位置随机出现新目标的跟踪能力。实验结果表明,与扩展卡尔曼PHD算法、无迹卡尔曼PHD算法和容积卡尔曼PHD算法相比,该算法在生成目标轨迹、目标个数估计和跟踪精度等方面有更好的性能。 展开更多
关键词 多目标跟踪 随机有限集 边缘卡尔曼滤波 概率假设密度 量测驱动
下载PDF
基于标签随机有限集滤波器的多扩展目标跟踪算法 被引量:2
11
作者 曹倬 冯新喜 +2 位作者 蒲磊 王雪 张琳琳 《系统工程与电子技术》 EI CSCD 北大核心 2018年第3期526-532,共7页
针对现有随机有限集(random finite set,RFS)扩展目标滤波器不能输出航迹的问题,提出了基于标签RFS滤波器的多扩展目标跟踪算法。该算法首先采用随机超曲面模型将目标建模为星-凸扩展形态,然后利用标签策略表征集合中的离散元素,结合基... 针对现有随机有限集(random finite set,RFS)扩展目标滤波器不能输出航迹的问题,提出了基于标签RFS滤波器的多扩展目标跟踪算法。该算法首先采用随机超曲面模型将目标建模为星-凸扩展形态,然后利用标签策略表征集合中的离散元素,结合基于延迟逻辑的多假设跟踪理论,采用N次回扫策略对多帧量测进行平滑处理。仿真实验结果表明,该算法可以在目标跟踪过程中形成完整航迹并对目标扩展形态进行有效估计,特别是在低信噪比探测场景中,所提算法跟踪精度明显优于传统RFS滤波算法,进一步提高了滤波器的稳定性和有效性。 展开更多
关键词 目标跟踪 多扩展目标 标签随机有限集 航迹维持
下载PDF
基于高斯混合势化概率假设密度的脉冲多普勒雷达多目标跟踪算法 被引量:6
12
作者 吴卫华 江晶 +1 位作者 冯讯 刘重阳 《电子与信息学报》 EI CSCD 北大核心 2015年第6期1490-1494,共5页
为在新兴的随机有限集(RFS)框架下充分利用多普勒信息跟踪杂波环境下的多目标,该文提出基于高斯混合势化概率假设密度(GM-CPHD)的脉冲多普勒雷达多目标跟踪(MTT)算法。该算法在标准GM-CPHD基础上,在使用位置量测更新状态后,再利用多普... 为在新兴的随机有限集(RFS)框架下充分利用多普勒信息跟踪杂波环境下的多目标,该文提出基于高斯混合势化概率假设密度(GM-CPHD)的脉冲多普勒雷达多目标跟踪(MTT)算法。该算法在标准GM-CPHD基础上,在使用位置量测更新状态后,再利用多普勒量测进行序贯更新,可获得更精确的似然函数和状态估计。仿真结果验证了该算法的有效性,表明在GM-CPHD基础上引入目标的多普勒信息可有效抑制杂波,显著改善跟踪性能。 展开更多
关键词 多目标跟踪 随机有限集 概率假设密度 高斯混合势化概率假设密度 脉冲多普勒雷达
下载PDF
基于关联的自适应新生目标强度CPHD滤波 被引量:3
13
作者 董鹏 敬忠良 +1 位作者 雷明 潘汉 《系统工程与电子技术》 EI CSCD 北大核心 2016年第4期725-731,共7页
量测驱动的自适应新生目标强度基数概率假设密度(adaptive target birth intensity cardinalized probability hypothesis density,ATBI-CPHD)滤波器可以在新生目标强度未知的情况下进行多目标跟踪,然而该方法利用所有量测产生新生目标... 量测驱动的自适应新生目标强度基数概率假设密度(adaptive target birth intensity cardinalized probability hypothesis density,ATBI-CPHD)滤波器可以在新生目标强度未知的情况下进行多目标跟踪,然而该方法利用所有量测产生新生目标,没有考虑关联问题。为此,本文提出了一种基于数据关联的改进算法。首先,给出了ATBI-CPHD在高斯混合CPHD(Gaussian mixture CPHD,GMCPHD)框架下的实现。其次,在GMCPHD滤波框架下采用一种基于量测标签的方法进行量测-估计关联,并引入高斯元标签进行航迹保持,在此基础上提出了一种航迹管理方法。最后采用量测波门进行量测-量测关联,利用关联后的量测产生新生目标。仿真结果表明,该算法可以在提高跟踪效果的同时提升计算效率。 展开更多
关键词 多目标跟踪 基数概率假设密度滤波 随机有限集 自适应新生目标强度
下载PDF
CBMeMBer滤波器序贯蒙特卡罗实现新方法的研究 被引量:5
14
作者 陈辉 韩崇昭 《自动化学报》 EI CSCD 北大核心 2016年第1期26-36,共11页
为提升多伯努利滤波器序贯蒙特卡罗(Sequential Monte Carlo,SMC)实现中粒子采样的有效性,提出一种CBMe MBer辅助粒子滤波(Auxiliary particle filter,APF)实现的新方法.首先,利用多伯努利后验概率密度选择适合于CBMe MBer滤波器的辅助... 为提升多伯努利滤波器序贯蒙特卡罗(Sequential Monte Carlo,SMC)实现中粒子采样的有效性,提出一种CBMe MBer辅助粒子滤波(Auxiliary particle filter,APF)实现的新方法.首先,利用多伯努利后验概率密度选择适合于CBMe MBer滤波器的辅助变量去重新定义采样问题.分别选择量测和先验密度分量作为辅助变量,确保最终的状态粒子能够集中在真实目标量测对应航迹的伯努利概率密度上进行采样,以使粒子向似然函数的峰值区移动,得到更为精确的多目标多伯努利(Multi-target multi-Bernoulli,Me MBer)后验概率密度的估计.同时,文中深入研究并给出了在量测更新和漏检情况下辅助变量以及多目标状态采样分布函数的设计,并研究利用渐近更新(Progressive correction,PC)算法对先验密度分量的量测更新进行迭代逼近计算,以提高最终分布函数求解的准确度.最后,针对两个典型非线性多目标跟踪问题的应用验证了算法的有效性. 展开更多
关键词 多目标跟踪 随机有限集 辅助变量 序贯蒙特卡罗 多伯努利
下载PDF
基于幅度信息的标签多伯努利滤波算法 被引量:1
15
作者 彭华甫 黄高明 +1 位作者 田威 邱昊 《系统工程与电子技术》 EI CSCD 北大核心 2018年第12期2636-2641,共6页
杂波环境下,现有多目标跟踪滤波器会出现性能衰减。对此,提出了基于幅度信息(amplitude information,AI)的广义标签多伯努利(generalized labeled multi-Bernoulli,GLMB)滤波算法(AI-GLMB)。通常杂波幅度低于目标回波幅度,通过引入幅度... 杂波环境下,现有多目标跟踪滤波器会出现性能衰减。对此,提出了基于幅度信息(amplitude information,AI)的广义标签多伯努利(generalized labeled multi-Bernoulli,GLMB)滤波算法(AI-GLMB)。通常杂波幅度低于目标回波幅度,通过引入幅度信息对目标状态进行扩展,建立幅度似然函数,推导新的更新方程,并给出了算法的序贯蒙特卡罗实现方法。仿真结果表明,AI-GLMB算法能有效适应高杂波环境,同幅度信息辅助的概率假设密度滤波算法、幅度信息势平衡多伯努利滤波算法及传统GLMB滤波算法相比,其跟踪精度更高。 展开更多
关键词 随机有限集 多目标跟踪 幅度信息 标签多伯努利
下载PDF
可提取衍生目标的带标签GM-PHD算法 被引量:1
16
作者 陈金广 赵甜甜 +1 位作者 马丽丽 徐步高 《光电工程》 CAS CSCD 北大核心 2016年第12期79-84,共6页
针对带标签的高斯混合概率假设密度滤波算法无法获取衍生目标的问题,提出一种可以提取衍生目标的带标签GM-PHD算法。首先,通过为高斯项加注标签的方式区别不同的目标,以辨别单个目标及其航迹。其次,在滤波过程中,对每一时刻得到的状态... 针对带标签的高斯混合概率假设密度滤波算法无法获取衍生目标的问题,提出一种可以提取衍生目标的带标签GM-PHD算法。首先,通过为高斯项加注标签的方式区别不同的目标,以辨别单个目标及其航迹。其次,在滤波过程中,对每一时刻得到的状态估计值与已形成的航迹标签进行匹配关联,实现航迹维持。最后,通过设置衍生阈值来判断状态估计中是否存在衍生目标以及可能产生的目标个数,为新生目标高斯项和可能的衍生目标高斯项重新分配标签,并创建新的航迹。仿真实验结果表明,与传统的带标签GM-PHD算法相比,在衍生目标存在的情况下,改进算法具有更好的跟踪性能。 展开更多
关键词 概率假设密度滤波 随机有限集 状态估计 衍生目标 带标签GM-PHD
下载PDF
基于容积原则的概率假设密度滤波算法 被引量:2
17
作者 王华剑 景占荣 《北京理工大学学报》 EI CAS CSCD 北大核心 2014年第12期1304-1309,共6页
为改善多目标跟踪问题中概率假设密度滤波精度与算法运行时间之间的关系,提高目标状态和数目的实时估计性能,提出了基于容积原则的概率假设密度滤波算法.该算法在高斯混合粒子概率假设密度的框架下,利用容积数值积分原则直接计算非线性... 为改善多目标跟踪问题中概率假设密度滤波精度与算法运行时间之间的关系,提高目标状态和数目的实时估计性能,提出了基于容积原则的概率假设密度滤波算法.该算法在高斯混合粒子概率假设密度的框架下,利用容积数值积分原则直接计算非线性随机函数的均值和方差,产生粒子滤波算法的重要性函数,实现高精度粒子的重构,来近似目标状态和数目的概率分布,并且在高斯混合概率假设密度滤波算法中进行采样和更新.仿真验证了所提出算法的有效性,其Wasserstein误差距离优化了17.32%,目标数估计均值也提高了23.72%. 展开更多
关键词 多目标跟踪 随机有限集 概率假设密度 容积原则 粒子滤波
下载PDF
基于多目标MS-OSPA下界的分散式传感器选择 被引量:1
18
作者 连峰 张修立 +3 位作者 魏博 侯利明 韩崇昭 王伟 《电子学报》 EI CAS CSCD 北大核心 2019年第10期2158-2165,共8页
本文提出了一种分散式大规模多目标跟踪网络的传感器选择优化算法.该方法以多目标状态集和估计集间的均方最优子模式分配误差下界作为优化目标函数,根据加权Kullback-Leibler平均(Kullback-Leibler average,KLA)准则对局部多目标密度进... 本文提出了一种分散式大规模多目标跟踪网络的传感器选择优化算法.该方法以多目标状态集和估计集间的均方最优子模式分配误差下界作为优化目标函数,根据加权Kullback-Leibler平均(Kullback-Leibler average,KLA)准则对局部多目标密度进行融合,最终采用坐标下降法来折中计算代价和跟踪精度.仿真实验在不同信噪比场景下验证了本方法的有效性. 展开更多
关键词 传感器选择 多目标跟踪 标签随机有限集 分散式传感器网络
下载PDF
幅度信息辅助的多机动目标跟踪算法 被引量:1
19
作者 彭华甫 黄高明 +1 位作者 田威 满欣 《海军工程大学学报》 CAS 北大核心 2020年第2期25-30,共6页
针对密集杂波下现有的多机动目标跟踪算法计算量大且性能严重衰退的问题,提出了联合幅度信息的多模型标签多伯努利(AI-MM-LMB)滤波器。首先,对目标状态进行扩展,引入幅度信息;然后,建立幅度信息及位置信息的联合量测似然函数;最后,基于M... 针对密集杂波下现有的多机动目标跟踪算法计算量大且性能严重衰退的问题,提出了联合幅度信息的多模型标签多伯努利(AI-MM-LMB)滤波器。首先,对目标状态进行扩展,引入幅度信息;然后,建立幅度信息及位置信息的联合量测似然函数;最后,基于MM-LMB滤波器框架,给出新的更新方程。仿真实验结果表明:低杂波下,AI-MM-LM算法同MM-LMB算法跟踪性能相当;高杂波下,AI-MM-LMB算法性能明显优于MM-LMB算法。 展开更多
关键词 多目标跟踪 机动目标 标签随机有限集 幅度信息
下载PDF
基于PMCMC-RFS的自主车SLAM算法 被引量:1
20
作者 苏奎峰 常天庆 +1 位作者 张雷 杨国振 《装甲兵工程学院学报》 2015年第2期70-75,共6页
针对无人自主车同时定位与地图构建(Simultaneous Localization And Mapping,SLAM)问题,采用随机有限集(Random Finite Set,RFS)方法对环境特征和车辆的位姿进行描述,将SLAM算法涉及到的多路标特征检测、跟踪、识别及相关等问题在一个... 针对无人自主车同时定位与地图构建(Simultaneous Localization And Mapping,SLAM)问题,采用随机有限集(Random Finite Set,RFS)方法对环境特征和车辆的位姿进行描述,将SLAM算法涉及到的多路标特征检测、跟踪、识别及相关等问题在一个统一的贝叶斯状态估计框架内表述,从而可以有效地解决后验估计、信息融合等算法严重依赖数据关联结果的问题。同时,为了计算复杂的联合后验分布,解决粒子滤波算法中提议分布选择困难问题,采用序贯蒙特卡罗(Sequential Monte Carlo,SMC)算法为马尔科夫链蒙特卡罗(Markov Chain Monte Carlo,MCMC)采样构建高维提议分布策略,提出了基于PMCMC-RFS(Particle MCMC based RFS)的SLAM问题求解方法。试验结果表明:PMCMC-RFS算法能动态估计感知范围内的特征数量,有效地避免了数据关联问题,从而提高了状态估计性能。 展开更多
关键词 同时定位与地图构建 随机有限集 马尔科夫链蒙特卡罗 粒子滤波
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部