期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Water-soluble Cu30 nanoclusters as a click chemistry catalyst for living cell labeling via azide-alkyne cycloaddition
1
作者 Ge Yang Yali Xie +7 位作者 Yaru Wang Ying Tang Leng Leng Chng Fuyi Jiang Fanglin Du Xianfeng Zhou Jackie Y.Ying Xun Yuan 《Nano Research》 SCIE EI CSCD 2023年第1期1748-1754,共7页
Cu(I)-catalyzed azide-alkyne cycloadditions(CuAAC)have gained increasing interest in the selective labeling of living cells and organisms with biomolecules.However,their application is constrained either by the high c... Cu(I)-catalyzed azide-alkyne cycloadditions(CuAAC)have gained increasing interest in the selective labeling of living cells and organisms with biomolecules.However,their application is constrained either by the high cytotoxicity of Cu(I)ions or the low activity of CuAAC in the internal space of living cells.This paper reports the design of a novel Cu-based nanocatalyst,watersoluble thiolated Cu30 nanoclusters(NCs),for living cell labeling via CuAAC.The Cu30 NCs offer good biocompatibility,excellent stability,and scalable synthesis(e.g.,gram scale),which would facilitate potential commercial applications.By combining the highly localized Cu(I)active species on the NC surface and good structural stability,the Cu30 NCs exhibit superior catalytic activities for a series of Huisgen cycloaddition reactions with good recyclability.More importantly,the biocompatibility of the Cu30 NCs enables them to be a good catalyst for CuAAC,whereby the challenging labeling of living cells can be achieved via CuAAC on the cell membrane.This study sheds light on the facile synthesis of atomically precise Cu NCs,as well as the design of novel Cu NCs-based nanocatalysts for CuAAC in intracellular bioorthogonal applications. 展开更多
关键词 Cu nanocluster click chemistry CATALYSIS azide-alkyne cycloaddition living cell labeling
原文传递
Long-term live-cell microscopy with labeled nanobodies delivered by laser-induced photoporation 被引量:1
2
作者 Jing Liu Tim Hebbrecht +10 位作者 Toon Brans Eef Parthoens Saskia Lippens Chengnan Li Herlinde De Keersmaecker Winnok H.De Vos Stefaan C.De Smedt Rabah Boukherroub Jan Gettemans Ranhua Xiong Kevin Braeckmans 《Nano Research》 SCIE EI CAS CSCD 2020年第2期485-495,共11页
Fluorescence microscopy is the method of choice for studying intracellular dynamics.However,its success depends on the.availability of specific and stable markers.A prominent example of markers that are rapidly gainin... Fluorescence microscopy is the method of choice for studying intracellular dynamics.However,its success depends on the.availability of specific and stable markers.A prominent example of markers that are rapidly gaining interest are nanobodies(Nbs.-15 kDa),which can be functionalized with bright and photostable organic fluorophores.Due to their relatively small size and high specificity,Nbs offer great potential for high-quality long-term subcellular imaging,but suffer from the fact that they cannot spontaneously cross the plasma membrane of live cells.We have recently discovered that laser-induced photoporation is well suited to deliver extrinsic labels to living cells without compromising their viability.Being a laser-based technology,it is readily compatible with light microscopy and the typical cell recipients used for that.Spurred by these promising initial results,we demonstrate here for the first time successful long-term imaging of specific subcellular structures with labeled nanobodies in living cells.We illustrate this using Nbs that target GFP/YFP-protein constructs accessible in the cytoplasm,actin-bundling protein Fascin,and the histone H2A/H2B heterodimers.With an efficiency of more than 80%labeled cells and minimal toxicity(-2%),photoporation proved to be an excellent intracellular delivery method for Nbs.Time-lapse microscopy revealed that cell division rate and migration remained unaffected,confirming excellent cell viability and functionality.We conclude that laser-induced photoporation labeled Nbs can be easily delivered into living cells,laying the foundation for further development of a broad range of Nbs with intracellular targets as a toolbox for long-term live-cell microscopy. 展开更多
关键词 laser-induced photoporation vapor nanobubble long-term microscopy imaging NANOBODY intracellular delivery living cell labeling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部