In this article, we introduce a new viscosity iterative method for two nonexpansive mappings in Hilbert spaces. We also prove, without commutativity assumption, that the iterates converge to a common fixed point of th...In this article, we introduce a new viscosity iterative method for two nonexpansive mappings in Hilbert spaces. We also prove, without commutativity assumption, that the iterates converge to a common fixed point of the mappings which solves some variational inequality. The results presented extend the corresponding results of Shimizu and Takahashi IT. Shimizu, W. Takahashi, Strong convergence to common fixed point of families of nonexpansive mappings, J. Math. Anal. Appl. 211 (1997), 71-83], and Yao and Chen [Y. Yao, R. Chert, Convergence to common fixed points of average mappings without commutativity assumption in Hilbert spaces, Nonlinear Analysis 67(2007), 1758-1763].展开更多
In this paper, we give some new results of common fixed point theorems and coincidence point case for some iterative method. By using of variation iteration method and an effective modification of He’s variation iter...In this paper, we give some new results of common fixed point theorems and coincidence point case for some iterative method. By using of variation iteration method and an effective modification of He’s variation iteration method discusses some integral and differential equations, we give out some new conclusion and more new examples.展开更多
We introduce a general iterative method for a finite family of generalized asymptotically quasi- nonexpansive mappings in a hyperbolic space and study its strong convergence. The new iterative method includes multi-st...We introduce a general iterative method for a finite family of generalized asymptotically quasi- nonexpansive mappings in a hyperbolic space and study its strong convergence. The new iterative method includes multi-step iterative method of Khan et al. [1] as a special case. Our results are new in hyperbolic spaces and generalize many known results in Banach spaces and CAT(0) spaces, simultaneously.展开更多
In this paper a new ODE numerical integration method was successfully applied to solving nonlinear equations. The method is of same simplicity as fixed point iteration, but the efficiency has been significantly improv...In this paper a new ODE numerical integration method was successfully applied to solving nonlinear equations. The method is of same simplicity as fixed point iteration, but the efficiency has been significantly improved, so it is especially suitable for large scale systems. For Brown’s equations, an existing article reported that when the dimension of the equation N = 40, the subroutines they used could not give a solution, as compared with our method, we can easily solve this equation even when N = 100. Other two large equations have the dimension of N = 1000, all the existing available methods have great difficulties to handle them, however, our method proposed in this paper can deal with those tough equations without any difficulties. The sigularity and choosing initial values problems were also mentioned in this paper.展开更多
In this study, the multistep method is applied to the STF system. This method has been tested on the STF system, which is a three-dimensional system of ODE with quadratic nonlinearities. A computer based Matlab progra...In this study, the multistep method is applied to the STF system. This method has been tested on the STF system, which is a three-dimensional system of ODE with quadratic nonlinearities. A computer based Matlab program has been developed in order to solve the STF system. Stable and unstable position of the system has been analyzed graphically and finally a comparison as well as accuracy between two-step sizes with detail. Newton’s method has been applied to show the best convergence of this system.展开更多
In this paper,a frictional contact problem between an electro-elastic body and an electrically conductive foundation is studied.The contact is modeled by normal compliance with finite penetration and a version of Coul...In this paper,a frictional contact problem between an electro-elastic body and an electrically conductive foundation is studied.The contact is modeled by normal compliance with finite penetration and a version of Coulomb’s law of dry friction in which the coefficient of friction depends on the slip.In addition,the effects of the electrical conductivity of the foundation are taken into account.This model leads to a coupled system of the quasi-variational inequality of the elliptic type for the displacement and the nonlinear variational equation for the electric potential.The existence of a weak solution is proved by using an abstract result for elliptic variational inequalities and a fixed point argument.Then,a finite element approximation of the problem is presented.Under some regularity conditions,an optimal order error estimate of the approximate solution is derived.Finally,a successive iteration technique is used to solve the problem numerically and a convergence result is established.展开更多
In this paper,we introduce a new iterative method based on the hybrid viscosity approximation method for finding a common element of the set of solutions of a general system of variational inequalities,an equilibrium ...In this paper,we introduce a new iterative method based on the hybrid viscosity approximation method for finding a common element of the set of solutions of a general system of variational inequalities,an equilibrium problem,and the set of common fixed points of a countable family of nonexpansive mappings in a Hilbert space.We prove a strong convergence theorem of the proposed iterative scheme under some suitable conditions on the parameters.Furthermore,we apply our main result for W-mappings.Finally,we give two numerical results to show the consistency and accuracy of the scheme.展开更多
In this paper, we combine the nonlinear HWENO reconstruction in [43] andthe fixed-point iteration with Gauss-Seidel fast sweeping strategy, to solve the staticHamilton-Jacobi equations in a novel HWENO framework recen...In this paper, we combine the nonlinear HWENO reconstruction in [43] andthe fixed-point iteration with Gauss-Seidel fast sweeping strategy, to solve the staticHamilton-Jacobi equations in a novel HWENO framework recently developed in [22].The proposed HWENO frameworks enjoys several advantages. First, compared withthe traditional HWENO framework, the proposed methods do not need to introduceadditional auxiliary equations to update the derivatives of the unknown function φ.They are now computed from the current value of φ and the previous spatial derivatives of φ. This approach saves the computational storage and CPU time, which greatlyimproves the computational efficiency of the traditional HWENO scheme. In addition,compared with the traditional WENO method, reconstruction stencil of the HWENOmethods becomes more compact, their boundary treatment is simpler, and the numerical errors are smaller on the same mesh. Second, the fixed-point fast sweeping methodis used to update the numerical approximation. It is an explicit method and doesnot involve the inverse operation of nonlinear Hamiltonian, therefore any HamiltonJacobi equations with complex Hamiltonian can be solved easily. It also resolves someknown issues, including that the iterative number is very sensitive to the parameterε used in the nonlinear weights, as observed in previous studies. Finally, to furtherreduce the computational cost, a hybrid strategy is also presented. Extensive numerical experiments are performed on two-dimensional problems, which demonstrate thegood performance of the proposed fixed-point fast sweeping HWENO methods.展开更多
基金the Thailand Research Fund for financial support under Grant BRG5280016
文摘In this article, we introduce a new viscosity iterative method for two nonexpansive mappings in Hilbert spaces. We also prove, without commutativity assumption, that the iterates converge to a common fixed point of the mappings which solves some variational inequality. The results presented extend the corresponding results of Shimizu and Takahashi IT. Shimizu, W. Takahashi, Strong convergence to common fixed point of families of nonexpansive mappings, J. Math. Anal. Appl. 211 (1997), 71-83], and Yao and Chen [Y. Yao, R. Chert, Convergence to common fixed points of average mappings without commutativity assumption in Hilbert spaces, Nonlinear Analysis 67(2007), 1758-1763].
文摘In this paper, we give some new results of common fixed point theorems and coincidence point case for some iterative method. By using of variation iteration method and an effective modification of He’s variation iteration method discusses some integral and differential equations, we give out some new conclusion and more new examples.
文摘We introduce a general iterative method for a finite family of generalized asymptotically quasi- nonexpansive mappings in a hyperbolic space and study its strong convergence. The new iterative method includes multi-step iterative method of Khan et al. [1] as a special case. Our results are new in hyperbolic spaces and generalize many known results in Banach spaces and CAT(0) spaces, simultaneously.
文摘In this paper a new ODE numerical integration method was successfully applied to solving nonlinear equations. The method is of same simplicity as fixed point iteration, but the efficiency has been significantly improved, so it is especially suitable for large scale systems. For Brown’s equations, an existing article reported that when the dimension of the equation N = 40, the subroutines they used could not give a solution, as compared with our method, we can easily solve this equation even when N = 100. Other two large equations have the dimension of N = 1000, all the existing available methods have great difficulties to handle them, however, our method proposed in this paper can deal with those tough equations without any difficulties. The sigularity and choosing initial values problems were also mentioned in this paper.
文摘In this study, the multistep method is applied to the STF system. This method has been tested on the STF system, which is a three-dimensional system of ODE with quadratic nonlinearities. A computer based Matlab program has been developed in order to solve the STF system. Stable and unstable position of the system has been analyzed graphically and finally a comparison as well as accuracy between two-step sizes with detail. Newton’s method has been applied to show the best convergence of this system.
文摘In this paper,a frictional contact problem between an electro-elastic body and an electrically conductive foundation is studied.The contact is modeled by normal compliance with finite penetration and a version of Coulomb’s law of dry friction in which the coefficient of friction depends on the slip.In addition,the effects of the electrical conductivity of the foundation are taken into account.This model leads to a coupled system of the quasi-variational inequality of the elliptic type for the displacement and the nonlinear variational equation for the electric potential.The existence of a weak solution is proved by using an abstract result for elliptic variational inequalities and a fixed point argument.Then,a finite element approximation of the problem is presented.Under some regularity conditions,an optimal order error estimate of the approximate solution is derived.Finally,a successive iteration technique is used to solve the problem numerically and a convergence result is established.
文摘In this paper,we introduce a new iterative method based on the hybrid viscosity approximation method for finding a common element of the set of solutions of a general system of variational inequalities,an equilibrium problem,and the set of common fixed points of a countable family of nonexpansive mappings in a Hilbert space.We prove a strong convergence theorem of the proposed iterative scheme under some suitable conditions on the parameters.Furthermore,we apply our main result for W-mappings.Finally,we give two numerical results to show the consistency and accuracy of the scheme.
基金This work was carried out when Y.Ren was visiting Department of Mathematics,The Ohio State University.The work of Y.Xing is partially supported by the NSF grant DMS-1753581The work of J.Qiu is partially supported by NSFC grant 12071392.
文摘In this paper, we combine the nonlinear HWENO reconstruction in [43] andthe fixed-point iteration with Gauss-Seidel fast sweeping strategy, to solve the staticHamilton-Jacobi equations in a novel HWENO framework recently developed in [22].The proposed HWENO frameworks enjoys several advantages. First, compared withthe traditional HWENO framework, the proposed methods do not need to introduceadditional auxiliary equations to update the derivatives of the unknown function φ.They are now computed from the current value of φ and the previous spatial derivatives of φ. This approach saves the computational storage and CPU time, which greatlyimproves the computational efficiency of the traditional HWENO scheme. In addition,compared with the traditional WENO method, reconstruction stencil of the HWENOmethods becomes more compact, their boundary treatment is simpler, and the numerical errors are smaller on the same mesh. Second, the fixed-point fast sweeping methodis used to update the numerical approximation. It is an explicit method and doesnot involve the inverse operation of nonlinear Hamiltonian, therefore any HamiltonJacobi equations with complex Hamiltonian can be solved easily. It also resolves someknown issues, including that the iterative number is very sensitive to the parameterε used in the nonlinear weights, as observed in previous studies. Finally, to furtherreduce the computational cost, a hybrid strategy is also presented. Extensive numerical experiments are performed on two-dimensional problems, which demonstrate thegood performance of the proposed fixed-point fast sweeping HWENO methods.