In the present work,the laminar plasma surface hardening method is employed to enhance the service life of metal components fabricated from 65 Mn steel.The mechanical and wear behaviors of the laminar plasma surface h...In the present work,the laminar plasma surface hardening method is employed to enhance the service life of metal components fabricated from 65 Mn steel.The mechanical and wear behaviors of the laminar plasma surface hardened 65 Mn steel were analyzed.The martensite transition transformation of the temperature of the laminar plasma-hardened 65 ferrite Mn steel was determined by a thermal-solid coupling model.Based on the orthogonal experimental results,the optimal hardening parameters were confirmed.The scanning velocity,quenching distance and arc current are 130 mm/min,50 mm and 120 A,respectively.The pearlites and ferrites are transformed into martensites in the hardened zone,while the ratio of martensite in the heataffected zone decreases with the increase in the hardening depth.Compared to the untreated 65Mn steel,the average hardness increases from 220 HV_(0.2)to 920 HV_(0.2)in the hardened zone and the corresponding absorbed power increases from 118.7 J to 175.5 J.At the same time,the average coefficient of friction(COF)decreases from 0.763 to 0.546,and the wear rate decreases from 5.39×10^(-6)mm^(3)/(N·m)to 2.95×10^(-6)mm^(3)/(N·m),indicating that the wear resistance of 65Mn steel could be significantly improved by using laminar surface hardening.With the same hardening parameters,the depth and width of the hardened zone predicted by the thermal-solid coupling model are 1.85 mm and 11.20 mm,respectively,which are in accordance with the experimental results;depth is 1.83 mm and width is 11.15 mm.In addition,the predicted hardness distributions of the simulation model are in accordance with the experimental results.These results indicate that the simulation model could effectively predict the microstructure characteristics of 65 Mn steel.展开更多
This study investigates the aerodynamic performance of the NACA 633-421 airfoil and the effectiveness and feasibility of intermittent disturbance flow control methods on laminar separation bubbles(LSBs).It is found th...This study investigates the aerodynamic performance of the NACA 633-421 airfoil and the effectiveness and feasibility of intermittent disturbance flow control methods on laminar separation bubbles(LSBs).It is found that the average velocity and influence range of the synthetic jet actuator increase with the increasing of driving frequency and driving amplitude.LSB occurs at Re=1.0×10^(5),and ruptures atα=6°.But with intermittent disturbance control,the stall angle of attack(AoA)increases while significantly reducing drag.Research shows that although certain disturbance cannot fully recover from LSB stall,decreasing driving amplitude partially restores wing aerodynamic performance,more effectively than increasing driving amplitude.展开更多
The laminar combustion characteristics of CH_(4)/air premixed flames with CO_(2) addition are systemically studied.Experimental measurements and numerical simulations of the laminar burning velocity(LBV)are performed ...The laminar combustion characteristics of CH_(4)/air premixed flames with CO_(2) addition are systemically studied.Experimental measurements and numerical simulations of the laminar burning velocity(LBV)are performed in CH_(4)/CO_(2)/Air flames with various CO_(2) doping ratio under equivalence ratios of 1.0–1.4.GRI 3.0 mech and Aramco mech are employed for predicting LBV,adiabatic flame temperature(AFT),important intermediate radicals(CH_(3),H,OH,O)and NO_(x) emissions(NO,NO_(2),N2O),as well as the sensitivity analysis is also conducted.The detail analysis of experiment and simulation reveals that as the CO_(2) addition increases from 0%to 40%,the LBVs and AFTs decrease monotonously.Under the same CO_(2) doping ratio,the LBVs and AFTs increase first and then decrease with the increase of equivalence ratio,and the maximum of LBV is reached at equivalence ratio of 1.05.The mole fraction tendency of important intermediates and NO_(x) with equivalence ratio and CO_(2) doping ratio are similar to the LBVs and AFTs.Reaction H+O_(2)⇔O+OH is found to be responsible for the promotion of the generation of important intermediates and NO_(x) under the equivalence ratios and CO_(2) addition through sensitivity analysis.The sensitivity coefficients of elementary reactions that the increasing of CO_(2) doping ratio promotes or inhibits formation of intermediate radicals and NO_(x) decreases.展开更多
Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid el...Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid electrolyte is synthesized by filtrating–NH 2 functionalized metal-organic framework nanosheets and then being threaded with poly(ethylene oxide)chains induced by the hydrogen-bonding interaction from–NH_(2) groups.It is demonstrated that the threaded poly(ethylene oxide)chains lock the adjacent metal-organic framework nanosheets,giving highly enhanced structural stability(Young’s modulus,1.3 GPa)to 7.5-μm-thick laminar composite solid electrolyte.Importantly,these poly(ethylene oxide)chains with stretching structure serve as continuous conduction pathways along the chains in pores.It makes the non-conduction laminar metal-organic framework electrolyte highly conductive:3.97×10^(−5) S cm^(−1) at 25℃,which is even over 25 times higher than that of pure poly(ethylene oxide)electrolyte.The assembled lithium cell,thus,acquires superior cycling stability,initial discharge capacity(148 mAh g^(−1) at 0.5 C and 60℃),and retention(94% after 150 cycles).Besides,the pore size of nanosheet is tailored(24.5–40.9˚A)to evaluate the mechanisms of chain conformation and ion transport in confined space.It shows that the confined pore only with proper size could facilitate the stretching of poly(ethylene oxide)chains,and meanwhile inhibit their disorder degree.Specifically,the pore size of 33.8˚A shows optimized confinement effect with trans-poly(ethylene oxide)and cis-poly(ethylene oxide)conformation,which offers great significance in ion conduction.Our design of poly(ethylene oxide)-threaded architecture provides a platform and paves a way to the rational design of next-generation high-performance porous electrolytes.展开更多
The thermal behavior of pipes with a twisted tape inside(used to enhance heat transfer through the tube wall)is studied in the laminar flow regime.Oil is used as the work fluid with the corresponding Reynolds Number s...The thermal behavior of pipes with a twisted tape inside(used to enhance heat transfer through the tube wall)is studied in the laminar flow regime.Oil is used as the work fluid with the corresponding Reynolds Number spanning the interval 200–2000.It is found that in such conditions the‘Nusselt Number’(Nu)gradually increases with reducing the tape twist ratio,whereas the friction factor is detrimentally affected by the presence of the tape(as witnessed by the comparison with the companion case where a plain tube is considered).In particular,it is shown that the heat transfer efficiency can be improved by nearly 69%if tape inserts with a relatively low twist ratio are used.On the basis of these findings,it is concluded that loose fit tape inserts are superior to tight fit tapes in terms of heat transfer and ease of replacement.展开更多
氢和氨作为清洁能源受到广泛关注,为深入探究氢-氨混燃的燃烧特性和影响因素,本文借助Chemkin仿真平台建立相关反应模型,以氢-氨混合气体为燃料,空气作为助燃剂,采用Otomo等人提出的一种氨氧化机理对其燃烧过程进行模拟计算,并模拟研究...氢和氨作为清洁能源受到广泛关注,为深入探究氢-氨混燃的燃烧特性和影响因素,本文借助Chemkin仿真平台建立相关反应模型,以氢-氨混合气体为燃料,空气作为助燃剂,采用Otomo等人提出的一种氨氧化机理对其燃烧过程进行模拟计算,并模拟研究了混合气体的点火延迟时间、层流燃烧速度、绝热燃烧温度、NO排放等燃烧特性随当量比、初始压力以及燃料中H_(2)比例的具体变化规律,对不同工况下的层流火焰结构、H和OH自由基的产率(rate of production,ROP)、NO生成的敏感度进行了化学动力学分析。结果表明:纯氨气体的点火延迟时间长、层流燃烧速度慢,掺氢后燃烧特性均有所改善,且提高了火焰的绝热燃烧温度,但掺氢比例越大,NO排放越多。NO摩尔分数随当量比变化的趋势先增后减,在当量比为0.8左右达到峰值。综合考虑氢-氨混燃的一系列燃烧特性以及掺氢、加压的成本和收益情况,推荐H_(2)占比15%、当量比φ=1.1、压力P=0.2 MPa为氢-氨混合燃烧的最优条件。展开更多
基金appreciate the support of the Key Laboratory of Mechanical Structure Optimization&Material Application Technology of Luzhou(No.SCHYZSA-2022-02)the Scientific Research and Innovation Team Program of Sichuan University of Science and Technology(No.SUSE652A004)+1 种基金the Key Laboratory of Intelligent Manufacturing of Construction Machinery Project(No.IMCM202103)the Panzhihua Key Laboratory of Advanced Manufacturing Technology Open Fund Project(No.2022XJZD01)。
文摘In the present work,the laminar plasma surface hardening method is employed to enhance the service life of metal components fabricated from 65 Mn steel.The mechanical and wear behaviors of the laminar plasma surface hardened 65 Mn steel were analyzed.The martensite transition transformation of the temperature of the laminar plasma-hardened 65 ferrite Mn steel was determined by a thermal-solid coupling model.Based on the orthogonal experimental results,the optimal hardening parameters were confirmed.The scanning velocity,quenching distance and arc current are 130 mm/min,50 mm and 120 A,respectively.The pearlites and ferrites are transformed into martensites in the hardened zone,while the ratio of martensite in the heataffected zone decreases with the increase in the hardening depth.Compared to the untreated 65Mn steel,the average hardness increases from 220 HV_(0.2)to 920 HV_(0.2)in the hardened zone and the corresponding absorbed power increases from 118.7 J to 175.5 J.At the same time,the average coefficient of friction(COF)decreases from 0.763 to 0.546,and the wear rate decreases from 5.39×10^(-6)mm^(3)/(N·m)to 2.95×10^(-6)mm^(3)/(N·m),indicating that the wear resistance of 65Mn steel could be significantly improved by using laminar surface hardening.With the same hardening parameters,the depth and width of the hardened zone predicted by the thermal-solid coupling model are 1.85 mm and 11.20 mm,respectively,which are in accordance with the experimental results;depth is 1.83 mm and width is 11.15 mm.In addition,the predicted hardness distributions of the simulation model are in accordance with the experimental results.These results indicate that the simulation model could effectively predict the microstructure characteristics of 65 Mn steel.
文摘This study investigates the aerodynamic performance of the NACA 633-421 airfoil and the effectiveness and feasibility of intermittent disturbance flow control methods on laminar separation bubbles(LSBs).It is found that the average velocity and influence range of the synthetic jet actuator increase with the increasing of driving frequency and driving amplitude.LSB occurs at Re=1.0×10^(5),and ruptures atα=6°.But with intermittent disturbance control,the stall angle of attack(AoA)increases while significantly reducing drag.Research shows that although certain disturbance cannot fully recover from LSB stall,decreasing driving amplitude partially restores wing aerodynamic performance,more effectively than increasing driving amplitude.
基金The authors would like to thank the National Natural Science Foundation of China(52176095)Anhui Provincial Natural Science Foundation(2008085J25)the Project of support program for outstanding young people in Colleges and Universities(gxyqZD201830)for their financial support of this study.
文摘The laminar combustion characteristics of CH_(4)/air premixed flames with CO_(2) addition are systemically studied.Experimental measurements and numerical simulations of the laminar burning velocity(LBV)are performed in CH_(4)/CO_(2)/Air flames with various CO_(2) doping ratio under equivalence ratios of 1.0–1.4.GRI 3.0 mech and Aramco mech are employed for predicting LBV,adiabatic flame temperature(AFT),important intermediate radicals(CH_(3),H,OH,O)and NO_(x) emissions(NO,NO_(2),N2O),as well as the sensitivity analysis is also conducted.The detail analysis of experiment and simulation reveals that as the CO_(2) addition increases from 0%to 40%,the LBVs and AFTs decrease monotonously.Under the same CO_(2) doping ratio,the LBVs and AFTs increase first and then decrease with the increase of equivalence ratio,and the maximum of LBV is reached at equivalence ratio of 1.05.The mole fraction tendency of important intermediates and NO_(x) with equivalence ratio and CO_(2) doping ratio are similar to the LBVs and AFTs.Reaction H+O_(2)⇔O+OH is found to be responsible for the promotion of the generation of important intermediates and NO_(x) under the equivalence ratios and CO_(2) addition through sensitivity analysis.The sensitivity coefficients of elementary reactions that the increasing of CO_(2) doping ratio promotes or inhibits formation of intermediate radicals and NO_(x) decreases.
基金The authors would like to acknowledge the financial support from National Nat-ural Science Foundation of China (U2004199)Excellent Youth Foundation of Henan Province (202300410373)+2 种基金China Postdoctoral Science Foundation (2021T140615 and 2020M672281)Natural Science Foundation of Henan Province (212300410285)Young Talent Support Project of Henan Province(2021HYTP028).
文摘Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid electrolyte is synthesized by filtrating–NH 2 functionalized metal-organic framework nanosheets and then being threaded with poly(ethylene oxide)chains induced by the hydrogen-bonding interaction from–NH_(2) groups.It is demonstrated that the threaded poly(ethylene oxide)chains lock the adjacent metal-organic framework nanosheets,giving highly enhanced structural stability(Young’s modulus,1.3 GPa)to 7.5-μm-thick laminar composite solid electrolyte.Importantly,these poly(ethylene oxide)chains with stretching structure serve as continuous conduction pathways along the chains in pores.It makes the non-conduction laminar metal-organic framework electrolyte highly conductive:3.97×10^(−5) S cm^(−1) at 25℃,which is even over 25 times higher than that of pure poly(ethylene oxide)electrolyte.The assembled lithium cell,thus,acquires superior cycling stability,initial discharge capacity(148 mAh g^(−1) at 0.5 C and 60℃),and retention(94% after 150 cycles).Besides,the pore size of nanosheet is tailored(24.5–40.9˚A)to evaluate the mechanisms of chain conformation and ion transport in confined space.It shows that the confined pore only with proper size could facilitate the stretching of poly(ethylene oxide)chains,and meanwhile inhibit their disorder degree.Specifically,the pore size of 33.8˚A shows optimized confinement effect with trans-poly(ethylene oxide)and cis-poly(ethylene oxide)conformation,which offers great significance in ion conduction.Our design of poly(ethylene oxide)-threaded architecture provides a platform and paves a way to the rational design of next-generation high-performance porous electrolytes.
文摘The thermal behavior of pipes with a twisted tape inside(used to enhance heat transfer through the tube wall)is studied in the laminar flow regime.Oil is used as the work fluid with the corresponding Reynolds Number spanning the interval 200–2000.It is found that in such conditions the‘Nusselt Number’(Nu)gradually increases with reducing the tape twist ratio,whereas the friction factor is detrimentally affected by the presence of the tape(as witnessed by the comparison with the companion case where a plain tube is considered).In particular,it is shown that the heat transfer efficiency can be improved by nearly 69%if tape inserts with a relatively low twist ratio are used.On the basis of these findings,it is concluded that loose fit tape inserts are superior to tight fit tapes in terms of heat transfer and ease of replacement.
文摘氢和氨作为清洁能源受到广泛关注,为深入探究氢-氨混燃的燃烧特性和影响因素,本文借助Chemkin仿真平台建立相关反应模型,以氢-氨混合气体为燃料,空气作为助燃剂,采用Otomo等人提出的一种氨氧化机理对其燃烧过程进行模拟计算,并模拟研究了混合气体的点火延迟时间、层流燃烧速度、绝热燃烧温度、NO排放等燃烧特性随当量比、初始压力以及燃料中H_(2)比例的具体变化规律,对不同工况下的层流火焰结构、H和OH自由基的产率(rate of production,ROP)、NO生成的敏感度进行了化学动力学分析。结果表明:纯氨气体的点火延迟时间长、层流燃烧速度慢,掺氢后燃烧特性均有所改善,且提高了火焰的绝热燃烧温度,但掺氢比例越大,NO排放越多。NO摩尔分数随当量比变化的趋势先增后减,在当量比为0.8左右达到峰值。综合考虑氢-氨混燃的一系列燃烧特性以及掺氢、加压的成本和收益情况,推荐H_(2)占比15%、当量比φ=1.1、压力P=0.2 MPa为氢-氨混合燃烧的最优条件。