Two-dimensional (2D) equations for multiferroic (MF) laminated plates with imperfect interfaces are established in this paper. The interface between two adjacent sublayers, which are not perfectly bonded together,...Two-dimensional (2D) equations for multiferroic (MF) laminated plates with imperfect interfaces are established in this paper. The interface between two adjacent sublayers, which are not perfectly bonded together, is modeled as a general spring-type layer. The mechanical displacements, and the electric and magnetic potentials of the two adjacent layers are assumed to be discontinuous at the interface. As an example, the influences of imperfect interfaces on the magnetoelectric (ME) coupling effects in an MF sandwich plate are investigated with the established 2D governing equations. Numerical results show that the imperfect interfaces have a significant impact on the ME coupling effects in MF laminated structures.展开更多
KAl(7075)alloy/Mg(AZ31)alloy laminated composite plates were successfully fabricated by the equalchannelangular processing(ECAP)by using route A for 1,2,and 3 passes at 573 K,respectively.After fabrication,the 1...KAl(7075)alloy/Mg(AZ31)alloy laminated composite plates were successfully fabricated by the equalchannelangular processing(ECAP)by using route A for 1,2,and 3 passes at 573 K,respectively.After fabrication,the 1-pass ECAPed laminated composite plates were annealed at different temperatures.The microstructure evolution,phase constituent,and bonding strength near the joining interface of Al(7075)alloy/Mg(AZ31)alloy laminated composites plates were evaluated with scanning electron microscopy,X-ray diffraction,and shear tests.The experimentalresults indicated that a 20 μm diffusion layer was observed at the joining interface of Al(7075)alloy/Mg(AZ31)alloy laminated composites plates fabricated by the 1-pass ECAP,which mainly included Al_3Mg_2 and Mg_(17)Al_(12) phases.With the increase of passes,the increase of diffusion layer thickness was not obvious and the form of crack in these processes led to the decrease of bonding strength.For 1-pass ECAPed composites,the thickness of diffusion layer remained unchanged after annealed at 473 K,while the bonding strength reached its maximum value 29.12 MPa.However,after elevating heat treatment temperature to 573 K,the thickness of diffusion layer increased rapidly,and thus the bonding strength decreased.展开更多
A continuum damage mechanics (CDM) meso-model was derived for both intraply and interply progressive failure behaviors of a 2D woven-fabric composite laminate under a transversely low velocity impact.An in-plane aniso...A continuum damage mechanics (CDM) meso-model was derived for both intraply and interply progressive failure behaviors of a 2D woven-fabric composite laminate under a transversely low velocity impact.An in-plane anisotropic damage constitutive model of a 2D woven composite ply was derived based on CDM within a thermodynamic framework,an elastic constitutive model with damage for the fibre directions and an elastic-plastic constitutive model with damage for the shear direction.The progressive failure behavior of a 2D woven composite ply is determined by the damage internal variables in different directions with appropriate damage evolution equations.The interface between two adjacent 2D woven composite plies with different ply orientations was modeled by a traction-separation law based interface element.An isotropic damage constitutive law with CDM properties was used for the interface element,and a damage surface which combines stress and fracture mechanics failure criteria was employed to derive the damage initiation and evolution for the mixed-mode delamination of the interface elements.Numerical analysis and experiments were both carried out on a 2D woven glass fibre/epoxy laminate.The simulation results are in agreement with the experimental counterparts,verifying the progressive failure model of a woven composite laminate.The proposed model will enhance the understanding of dynamic deformation and progressive failure behavior of composite laminate structures in the low velocity impact process.展开更多
基金supported by the National Natural Science Foundation of China(11672265,11202182,11272281,11621062,and 11321202)the Fundamental Research Funds for the Central Universities(2016QNA4026 and 2016XZZX001-05)the open foundation of Zhejiang Provincial Top Key Discipline of Mechanical Engineering
文摘Two-dimensional (2D) equations for multiferroic (MF) laminated plates with imperfect interfaces are established in this paper. The interface between two adjacent sublayers, which are not perfectly bonded together, is modeled as a general spring-type layer. The mechanical displacements, and the electric and magnetic potentials of the two adjacent layers are assumed to be discontinuous at the interface. As an example, the influences of imperfect interfaces on the magnetoelectric (ME) coupling effects in an MF sandwich plate are investigated with the established 2D governing equations. Numerical results show that the imperfect interfaces have a significant impact on the ME coupling effects in MF laminated structures.
基金Funded by the National Natural Science Foundations of China(No.51301118)the Projects of International Cooperation in Shanxi(2014081002)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2013108)
文摘KAl(7075)alloy/Mg(AZ31)alloy laminated composite plates were successfully fabricated by the equalchannelangular processing(ECAP)by using route A for 1,2,and 3 passes at 573 K,respectively.After fabrication,the 1-pass ECAPed laminated composite plates were annealed at different temperatures.The microstructure evolution,phase constituent,and bonding strength near the joining interface of Al(7075)alloy/Mg(AZ31)alloy laminated composites plates were evaluated with scanning electron microscopy,X-ray diffraction,and shear tests.The experimentalresults indicated that a 20 μm diffusion layer was observed at the joining interface of Al(7075)alloy/Mg(AZ31)alloy laminated composites plates fabricated by the 1-pass ECAP,which mainly included Al_3Mg_2 and Mg_(17)Al_(12) phases.With the increase of passes,the increase of diffusion layer thickness was not obvious and the form of crack in these processes led to the decrease of bonding strength.For 1-pass ECAPed composites,the thickness of diffusion layer remained unchanged after annealed at 473 K,while the bonding strength reached its maximum value 29.12 MPa.However,after elevating heat treatment temperature to 573 K,the thickness of diffusion layer increased rapidly,and thus the bonding strength decreased.
文摘A continuum damage mechanics (CDM) meso-model was derived for both intraply and interply progressive failure behaviors of a 2D woven-fabric composite laminate under a transversely low velocity impact.An in-plane anisotropic damage constitutive model of a 2D woven composite ply was derived based on CDM within a thermodynamic framework,an elastic constitutive model with damage for the fibre directions and an elastic-plastic constitutive model with damage for the shear direction.The progressive failure behavior of a 2D woven composite ply is determined by the damage internal variables in different directions with appropriate damage evolution equations.The interface between two adjacent 2D woven composite plies with different ply orientations was modeled by a traction-separation law based interface element.An isotropic damage constitutive law with CDM properties was used for the interface element,and a damage surface which combines stress and fracture mechanics failure criteria was employed to derive the damage initiation and evolution for the mixed-mode delamination of the interface elements.Numerical analysis and experiments were both carried out on a 2D woven glass fibre/epoxy laminate.The simulation results are in agreement with the experimental counterparts,verifying the progressive failure model of a woven composite laminate.The proposed model will enhance the understanding of dynamic deformation and progressive failure behavior of composite laminate structures in the low velocity impact process.