Piezoelectric devices exhibit unique properties that vary with different vibration modes,closely influenced by their polarization direction.This paper presents an analysis on the free vibration of laminated piezoelect...Piezoelectric devices exhibit unique properties that vary with different vibration modes,closely influenced by their polarization direction.This paper presents an analysis on the free vibration of laminated piezoelectric beams with varying polarization directions,using a state-space-based differential quadrature method.First,based on the electro-elasticity theory,the state-space method is extended to anisotropic piezoelectric materials,establishing state-space equations for arbitrary polarized piezoelectric beams.A semi-analytical solution for the natural frequency is then obtained via the differential quadrature method.The study commences by examining the impact of a uniform polarization direction,and then proceeds to analyze six polarization schemes relevant to the current research and applications.Additionally,the effects of geometric dimensions and gradient index on the natural frequencies are explored.The numerical results demonstrate that varying the polarization direction can significantly influence the natural frequencies,offering distinct advantages for piezoelectric elements with different polarizations.This research provides both theoretical insights and numerical methods for the structural design of piezoelectric devices.展开更多
Free vibration of statically thermal postbuckled functionally graded material (FGM) beams with surface-bonded piezoelectric layers subject to both temperature rise and voltage is studied. By accurately considering t...Free vibration of statically thermal postbuckled functionally graded material (FGM) beams with surface-bonded piezoelectric layers subject to both temperature rise and voltage is studied. By accurately considering the axial extension and based on the Euler-Bernoulli beam theory, geometrically nonlinear dynamic governing equations for FGM beams with surface-bonded piezoelectric layers subject to thermo-electro- mechanical loadings are formulated. It is assumed that the material properties of the middle FGM layer vary continuously as a power law function of the thickness coordinate, and the piezoelectric layers are isotropic and homogenous. By assuming that the amplitude of the beam vibration is small and its response is harmonic, the above mentioned non-linear partial differential equations are reduced to two sets of coupled ordinary differential equations. One is for the postbuckling, and the other is for the linear vibration of the beam superimposed upon the postbuckled configuration. Using a shooting method to solve the two sets of ordinary differential equations with fixed-fixed boundary conditions numerically, the response of postbuckling and free vibration in the vicinity of the postbuckled configuration of the beam with fixed-fixed ends and subject to transversely nonuniform heating and uniform electric field is obtained. Thermo-electric postbuckling equilibrium paths and characteristic curves of the first three natural frequencies versus the temperature, the electricity, and the material gradient parameters are plotted. It is found that the three lowest frequencies of the prebuckled beam decrease with the increase of the temperature, but those of a buckled beam increase monotonically with the temperature rise. The results also show that the tensional force produced in the piezoelectric layers by the voltage can efficiently increase the critical buckling temperature and the natural frequency.展开更多
A simple nonlinear model is proposed in this paper to study the bending wave in a rectangular piezoelectric laminated beam of infinite length.Based on the constitutive relations for transversely isotropic piezoelectri...A simple nonlinear model is proposed in this paper to study the bending wave in a rectangular piezoelectric laminated beam of infinite length.Based on the constitutive relations for transversely isotropic piezoelectric materials and isotropic elastic materials,combined with some electric conditions,we derive the bending wave equation in a long rectangular piezoelectric laminated beam by using energy method.The nonlinearity considered is geometrically associated with the nonlinear normal strain in the longitudinal beam direction.The shock-wave solution,solitary-wave solution and other exact solutions of the bending wave equation are obtained by the extended F-expansion method.And by using the reductive perturbation method we derive the nonlinear Schrodinger(NLS)equation,further more,the bright and dark solitons are obtained.For those soliton solutions,and some parameters derived by the process of solving soliton solutions,some conclusions are drawn by numerical analysis with some fixed conditions.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.12272353 and 12002316)the Key Scientific and Technological Research Projects in Henan Province of China(No.232102211075)。
文摘Piezoelectric devices exhibit unique properties that vary with different vibration modes,closely influenced by their polarization direction.This paper presents an analysis on the free vibration of laminated piezoelectric beams with varying polarization directions,using a state-space-based differential quadrature method.First,based on the electro-elasticity theory,the state-space method is extended to anisotropic piezoelectric materials,establishing state-space equations for arbitrary polarized piezoelectric beams.A semi-analytical solution for the natural frequency is then obtained via the differential quadrature method.The study commences by examining the impact of a uniform polarization direction,and then proceeds to analyze six polarization schemes relevant to the current research and applications.Additionally,the effects of geometric dimensions and gradient index on the natural frequencies are explored.The numerical results demonstrate that varying the polarization direction can significantly influence the natural frequencies,offering distinct advantages for piezoelectric elements with different polarizations.This research provides both theoretical insights and numerical methods for the structural design of piezoelectric devices.
基金supported by the National Natural Science Foundation of China (Nos. 10872083 and10602021)the Doctoral Foundation of Ministry of Education of China (No. 200807310002)
文摘Free vibration of statically thermal postbuckled functionally graded material (FGM) beams with surface-bonded piezoelectric layers subject to both temperature rise and voltage is studied. By accurately considering the axial extension and based on the Euler-Bernoulli beam theory, geometrically nonlinear dynamic governing equations for FGM beams with surface-bonded piezoelectric layers subject to thermo-electro- mechanical loadings are formulated. It is assumed that the material properties of the middle FGM layer vary continuously as a power law function of the thickness coordinate, and the piezoelectric layers are isotropic and homogenous. By assuming that the amplitude of the beam vibration is small and its response is harmonic, the above mentioned non-linear partial differential equations are reduced to two sets of coupled ordinary differential equations. One is for the postbuckling, and the other is for the linear vibration of the beam superimposed upon the postbuckled configuration. Using a shooting method to solve the two sets of ordinary differential equations with fixed-fixed boundary conditions numerically, the response of postbuckling and free vibration in the vicinity of the postbuckled configuration of the beam with fixed-fixed ends and subject to transversely nonuniform heating and uniform electric field is obtained. Thermo-electric postbuckling equilibrium paths and characteristic curves of the first three natural frequencies versus the temperature, the electricity, and the material gradient parameters are plotted. It is found that the three lowest frequencies of the prebuckled beam decrease with the increase of the temperature, but those of a buckled beam increase monotonically with the temperature rise. The results also show that the tensional force produced in the piezoelectric layers by the voltage can efficiently increase the critical buckling temperature and the natural frequency.
文摘A simple nonlinear model is proposed in this paper to study the bending wave in a rectangular piezoelectric laminated beam of infinite length.Based on the constitutive relations for transversely isotropic piezoelectric materials and isotropic elastic materials,combined with some electric conditions,we derive the bending wave equation in a long rectangular piezoelectric laminated beam by using energy method.The nonlinearity considered is geometrically associated with the nonlinear normal strain in the longitudinal beam direction.The shock-wave solution,solitary-wave solution and other exact solutions of the bending wave equation are obtained by the extended F-expansion method.And by using the reductive perturbation method we derive the nonlinear Schrodinger(NLS)equation,further more,the bright and dark solitons are obtained.For those soliton solutions,and some parameters derived by the process of solving soliton solutions,some conclusions are drawn by numerical analysis with some fixed conditions.