Bearing failure of composite laminate is very complicated due to the complexity of different failure mechanisms and their interactions. In this paper, an elasto-plastic damage model is built up to describe the process...Bearing failure of composite laminate is very complicated due to the complexity of different failure mechanisms and their interactions. In this paper, an elasto-plastic damage model is built up to describe the process of failure in composite laminates subjected to bearing load. Non-linear behavior of composite before failure is taken into consideration by using a modified Sun-Chen one parameter plasticity model. LaRC05 failure criteria are employed to predict the initiation of failure and the evolution of failure is described by a CDM based stiffness degradation model. Both theory and some application issues like parameter determination are discussed according to phenomenon of experiments. The model is firstly validated by several experiment results of unidirectional laminate and then applicated into the progressive analysis of bearing failure in pin-loaded multidirectional laminates, both intralaminar and interlaminar damage are taken into consideration. The result of finite element analysis is compared with experiment results;it shows good agreements in both mechanical response and progress of failure, so the model can be evaluated to be effective and practical in bearing failure analysis of composite laminates.展开更多
Microbial mats, mainly dominated by filamentous algae Calothrix and Oscillatoria, are well developed in Tibetan hot springs. A great number of fossil microorganisms, which existed as algae lamination in thermal deposi...Microbial mats, mainly dominated by filamentous algae Calothrix and Oscillatoria, are well developed in Tibetan hot springs. A great number of fossil microorganisms, which existed as algae lamination in thermal depositional cesium-bearing geyserite in this area, are identified as Calothrix and Oscillatoria through microexamination and culture experiments. These microbial mats show the ability to accumulate cesium from spring water to the extent of cesium concentration of 0.46-1.03% cell dry weight, 900 times higher than that in water, and capture large numbers of cesium-bearing opal grain. Silicon dioxide colloid in spring water replaces and fills with the organism and deposits on it to form algae laminated geyserite after dehydration and congelation. Cesium in the microbial mats and opal grain is then reserved in the geyserite. Eventually, cesium-bearing algae laminated geyserite is formed. Study on cesium distribution in geyserite also shows that cesium content in algae lamination, especially in heavily compacted algae lamination, is higher than in the opal layer. For geyserite with no algae lamination or other organism structure, which is generally formed in spring water with low silicon content, cesium accumulation and cesium-bearing opal grain assembled by the microbial mats are also indispensable. After the microbial mats accumulating cesium from spring water, silicon dioxide colloid poorly replaces and fills with the organism to form opal grain-bearing tremellose microbial mats. The shape and structure of the organisms are then destroyed, resulting in cesium-bearing geyserite with no algae lamination structure after dehydration and congelation. It is then concluded that microbial mats in the spring area contribute to the enrichment of cesium in the formation of cesium-bearing geyserite, and a biological genesis of the geyserite, besides of the physical and chemical genesis, is likely.展开更多
Base isolation concept is currently accepted as a new strategy for earthquake resistance structures. According to different types of base isolation devices, laminated rubber bearing which is made by thin layers of ste...Base isolation concept is currently accepted as a new strategy for earthquake resistance structures. According to different types of base isolation devices, laminated rubber bearing which is made by thin layers of steel shims bonded by rubber is one of the most popular devices to reduce the effects of earthquake in the buildings. Laminated rubber bearings should be protected against failure or instability because failure of isolation devices may cause serious damage on the structures. Hence, the prediction of the behaviour of the laminated rubber bearing with different properties is essential in the design of a seismic bearing. In this paper, a finite element modeling of the laminated rubber bearing is presented. The procedures of modeling the rubber bearing with finite element are described. By the comparison of the numerical and the experimental, the validities of modelling and results have been determined. The results of this study perform that there is a good agreement between finite element analysis and experimental results.展开更多
文摘Bearing failure of composite laminate is very complicated due to the complexity of different failure mechanisms and their interactions. In this paper, an elasto-plastic damage model is built up to describe the process of failure in composite laminates subjected to bearing load. Non-linear behavior of composite before failure is taken into consideration by using a modified Sun-Chen one parameter plasticity model. LaRC05 failure criteria are employed to predict the initiation of failure and the evolution of failure is described by a CDM based stiffness degradation model. Both theory and some application issues like parameter determination are discussed according to phenomenon of experiments. The model is firstly validated by several experiment results of unidirectional laminate and then applicated into the progressive analysis of bearing failure in pin-loaded multidirectional laminates, both intralaminar and interlaminar damage are taken into consideration. The result of finite element analysis is compared with experiment results;it shows good agreements in both mechanical response and progress of failure, so the model can be evaluated to be effective and practical in bearing failure analysis of composite laminates.
基金co-supported by the National Key Project on Basic Research(2011CB403006)the Special Fund for Scientific Research of Central-leveled Academy(K2007-3-2)National Geological Survey(1212010818057,1212011120046)
文摘Microbial mats, mainly dominated by filamentous algae Calothrix and Oscillatoria, are well developed in Tibetan hot springs. A great number of fossil microorganisms, which existed as algae lamination in thermal depositional cesium-bearing geyserite in this area, are identified as Calothrix and Oscillatoria through microexamination and culture experiments. These microbial mats show the ability to accumulate cesium from spring water to the extent of cesium concentration of 0.46-1.03% cell dry weight, 900 times higher than that in water, and capture large numbers of cesium-bearing opal grain. Silicon dioxide colloid in spring water replaces and fills with the organism and deposits on it to form algae laminated geyserite after dehydration and congelation. Cesium in the microbial mats and opal grain is then reserved in the geyserite. Eventually, cesium-bearing algae laminated geyserite is formed. Study on cesium distribution in geyserite also shows that cesium content in algae lamination, especially in heavily compacted algae lamination, is higher than in the opal layer. For geyserite with no algae lamination or other organism structure, which is generally formed in spring water with low silicon content, cesium accumulation and cesium-bearing opal grain assembled by the microbial mats are also indispensable. After the microbial mats accumulating cesium from spring water, silicon dioxide colloid poorly replaces and fills with the organism to form opal grain-bearing tremellose microbial mats. The shape and structure of the organisms are then destroyed, resulting in cesium-bearing geyserite with no algae lamination structure after dehydration and congelation. It is then concluded that microbial mats in the spring area contribute to the enrichment of cesium in the formation of cesium-bearing geyserite, and a biological genesis of the geyserite, besides of the physical and chemical genesis, is likely.
文摘Base isolation concept is currently accepted as a new strategy for earthquake resistance structures. According to different types of base isolation devices, laminated rubber bearing which is made by thin layers of steel shims bonded by rubber is one of the most popular devices to reduce the effects of earthquake in the buildings. Laminated rubber bearings should be protected against failure or instability because failure of isolation devices may cause serious damage on the structures. Hence, the prediction of the behaviour of the laminated rubber bearing with different properties is essential in the design of a seismic bearing. In this paper, a finite element modeling of the laminated rubber bearing is presented. The procedures of modeling the rubber bearing with finite element are described. By the comparison of the numerical and the experimental, the validities of modelling and results have been determined. The results of this study perform that there is a good agreement between finite element analysis and experimental results.
文摘以我国量大面广的板式橡胶支座梁桥为研究对象,开展板式橡胶支座梁桥抗震韧性评估方法研究.首先阐明了桥梁的通用抗震韧性评估框架,包括桥梁非线性建模、面向韧性评价的地震易损性曲线建立和韧性评估3个模块.其次,针对典型板式橡胶支座梁桥,在OpenSees平台建立非线性有限元模型,进行增量动力分析,采用支座残余位移和峰值位移界定桥梁的损伤状态,构建板式橡胶支座梁桥地震易损性曲线.然后,结合不同损伤状态下板式橡胶支座梁桥的损伤概率和对应的构件功能恢复模型,生成给定PGA下的功能恢复曲线.最后,以等效的桥梁总关闭天数为韧性指标,生成桥梁韧性随PGA的变化曲线.结果表明,当PGA从0.6g增加到1.0g时,桥梁韧性快速下降,等效的桥梁总关闭天数从15 d增加到58 d.