With Al foil,Cu foil and steel mesh as the metal interlayers,respectively,three types of alumina/epoxy/metal laminated composites were fabricated with epoxy resin adhesive as a binder via a simple process.The impact t...With Al foil,Cu foil and steel mesh as the metal interlayers,respectively,three types of alumina/epoxy/metal laminated composites were fabricated with epoxy resin adhesive as a binder via a simple process.The impact tests were performed and the fracture patterns and impact response of all the three laminates were analyzed.The experimental results indicate that the absorbed energy is mainly determined by metal interlayer.The peak load depends on not only alumina substrate but also metal interlayer.The Al2O3/epoxy/Cu laminates sustain the maximum peak load and Al2O3/epoxy/steel mesh laminates have the largest threshold energy for penetration.The fracture analysis shows that the main damage modes are Al2O3 matrix cracking and metal deformation for lower impact energies,and complete breakage and penetration for higher impact energies.展开更多
基金Funded by the Science and Technology Program of Guangdong Province of China(No.2012B091000107)the Subproject of China Education&Equipment Resource System(No.CERS-1-2)
文摘With Al foil,Cu foil and steel mesh as the metal interlayers,respectively,three types of alumina/epoxy/metal laminated composites were fabricated with epoxy resin adhesive as a binder via a simple process.The impact tests were performed and the fracture patterns and impact response of all the three laminates were analyzed.The experimental results indicate that the absorbed energy is mainly determined by metal interlayer.The peak load depends on not only alumina substrate but also metal interlayer.The Al2O3/epoxy/Cu laminates sustain the maximum peak load and Al2O3/epoxy/steel mesh laminates have the largest threshold energy for penetration.The fracture analysis shows that the main damage modes are Al2O3 matrix cracking and metal deformation for lower impact energies,and complete breakage and penetration for higher impact energies.