The virtual laminated element method (VLEM) can resolve structural shap e optimization problems with a new method. According to the characteristics of V LEM , only some characterized layer thickness values need be def...The virtual laminated element method (VLEM) can resolve structural shap e optimization problems with a new method. According to the characteristics of V LEM , only some characterized layer thickness values need be defined as design v ariables instead of boundary node coordinates or some other parameters determini ng the system boundary. One of the important features of this method is that it is not necessary to regenerate the FE(finite element) grid during the optimizati on process so as to avoid optimization failures resulting from some distortion grid elements. Th e thickness distribution in thin plate optimization problems in other studies be fore is of stepped shape. However, in this paper, a continuous thickness distrib ution can be obtained after optimization using VLEM, and is more reasonable. Fur thermore, an approximate reanalysis method named ″behavior model technique″ ca n be used to reduce the amount of structural reanalysis. Some typical examples are offered to prove the effectiveness and practicality of the proposed method.展开更多
This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. Th...This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. The method of 3D-VLE was developed to analyze the effects of concrete creep behavior on CFT structures. After the evaluation of the parameters in the proposed creep model, experimental measurements of two prestressed reinforced concrete beams were used to investigate the creep phenomenon of three CFT columns under long-term axial and eccentric load was investigated. The experimentally obtained time-dependent creep behaviour accorded well with the cu~'es obtained from the proposed method. Many factors (such as ratio of long-term load to strength, slenderness ratio, steel ratio, and eccentricity ratio) were considered to obtain the regularity of influence of concrete creep on CFT structures. The analytical results can be consulted in the engineering practice and design.展开更多
The middle layer model has been used in recent years to better describe the connection behavior in composite structures.The influencing parameters including low pre-screw and high preload have the main effects on nonl...The middle layer model has been used in recent years to better describe the connection behavior in composite structures.The influencing parameters including low pre-screw and high preload have the main effects on nonlinear behavior of the connection as well as the amplitude of the excitation force applied to the structure.Therefore,in this study,the effects of connection behavior on the general structure in two sections of increasing damping and reducing the stiffness of the structures that lead to non-linear phenomena have been investigated.Due to the fact that in composite structure we are faced to the limitation of increasing screw preload which tend to structural damage,so the investigation on the hybrid connection(metal-composite)behavior is conducted.In this research,using the two-dimensional middle layer theory,the stiffness properties of the connection are modeled by normal stiffness and the connection damping is modeled using the structural damping in the shear direction.Nonlinear frequency response diagrams have been extracted twice for two different excitation forces and then proposed by a high-order multitasking approximation according to the response range of the nonlinear finite element model for stiffness and damping of the connection.The effect of increasing the amplitude of the excitation force and decreasing the preload of the screw on the nonlinear behavior of the component has been extracted.The results show that the limited presented novel component model has been accurately verified on the model obtained from the vibration experimental test and the reduction of nonlinear model updating based on that is represented.The comparison results show good agreementwith a maximumof 1.33%error.展开更多
Sandwich plate systems (SPS) are advanced materials that have begun to receive extensive attention in naval architecture and ocean engineering.At present, according to the rules of classification societies, a mixture ...Sandwich plate systems (SPS) are advanced materials that have begun to receive extensive attention in naval architecture and ocean engineering.At present, according to the rules of classification societies, a mixture of shell and solid elements are required to simulate an SPS.Based on the principle of stiffness decomposition, a new numerical simulation method for shell elements was proposed.In accordance with the principle of stiffness decomposition, the total stiffness can be decomposed into the bending stiffness and shear stiffness.Displacement and stress response related to bending stiffness was calculated with the laminated shell element.Displacement and stress response due to shear was calculated by use of a computational code write by FORTRAN language.Then the total displacement and stress response for the SPS was obtained by adding together these two parts of total displacement and stress.Finally, a rectangular SPS plate and a double-bottom structure were used for a simulation.The results show that the deflection simulated by the elements proposed in the paper is larger than the same simulated by solid elements and the analytical solution according to Hoff theory and approximate to the same simulated by the mixture of shell-solid elements, and the stress simulated by the elements proposed in the paper is approximate to the other simulating methods.So compared with calculations based on a mixture of shell and solid elements, the numerical simulation method given in the paper is more efficient and easier to do.展开更多
This paper presents a novel parallel implementation technology for wave-based structural health monitoring (SHM) in laminated composite plates. The wavelet-based B-spline wavelet on he interval (BSWI) element is cons...This paper presents a novel parallel implementation technology for wave-based structural health monitoring (SHM) in laminated composite plates. The wavelet-based B-spline wavelet on he interval (BSWI) element is constructed according to Hamilton’s principle, and the element by element algorithm is parallelly executed on graphics processing unit (GPU) using compute unified device architecture (CUDA) to get the responses in full wave field accurately. By means of the Fourier spectral analysis method,the Mindlin plate theory is selected for wave modeling of laminated composite plates while the Kirchhoff plate theory predicts unreasonably phase and group velocities. Numerical examples involving wave propagation in laminated composite plates without and with crack are performed and discussed in detail. The parallel implementation on GPU is accelerated 146 times comparing with the same wave motion problem executed on central processing unit (CPU). The validity and accuracy of the proposed parallel implementation are also demonstrated by comparing with conventional finite element method (FEM) and the computation time has been reduced from hours to minutes. The damage size and location have been successfully determined according to wave propagation results based on delay-and-sum (DAS). The results show that the proposed parallel implementation of wavelet finite element method (WFEM) is very appropriate and efficient for wave-based SHM in laminated composite plates.展开更多
A continuum damage mechanics (CDM) meso-model was derived for both intraply and interply progressive failure behaviors of a 2D woven-fabric composite laminate under a transversely low velocity impact.An in-plane aniso...A continuum damage mechanics (CDM) meso-model was derived for both intraply and interply progressive failure behaviors of a 2D woven-fabric composite laminate under a transversely low velocity impact.An in-plane anisotropic damage constitutive model of a 2D woven composite ply was derived based on CDM within a thermodynamic framework,an elastic constitutive model with damage for the fibre directions and an elastic-plastic constitutive model with damage for the shear direction.The progressive failure behavior of a 2D woven composite ply is determined by the damage internal variables in different directions with appropriate damage evolution equations.The interface between two adjacent 2D woven composite plies with different ply orientations was modeled by a traction-separation law based interface element.An isotropic damage constitutive law with CDM properties was used for the interface element,and a damage surface which combines stress and fracture mechanics failure criteria was employed to derive the damage initiation and evolution for the mixed-mode delamination of the interface elements.Numerical analysis and experiments were both carried out on a 2D woven glass fibre/epoxy laminate.The simulation results are in agreement with the experimental counterparts,verifying the progressive failure model of a woven composite laminate.The proposed model will enhance the understanding of dynamic deformation and progressive failure behavior of composite laminate structures in the low velocity impact process.展开更多
文摘The virtual laminated element method (VLEM) can resolve structural shap e optimization problems with a new method. According to the characteristics of V LEM , only some characterized layer thickness values need be defined as design v ariables instead of boundary node coordinates or some other parameters determini ng the system boundary. One of the important features of this method is that it is not necessary to regenerate the FE(finite element) grid during the optimizati on process so as to avoid optimization failures resulting from some distortion grid elements. Th e thickness distribution in thin plate optimization problems in other studies be fore is of stepped shape. However, in this paper, a continuous thickness distrib ution can be obtained after optimization using VLEM, and is more reasonable. Fur thermore, an approximate reanalysis method named ″behavior model technique″ ca n be used to reduce the amount of structural reanalysis. Some typical examples are offered to prove the effectiveness and practicality of the proposed method.
文摘This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. The method of 3D-VLE was developed to analyze the effects of concrete creep behavior on CFT structures. After the evaluation of the parameters in the proposed creep model, experimental measurements of two prestressed reinforced concrete beams were used to investigate the creep phenomenon of three CFT columns under long-term axial and eccentric load was investigated. The experimentally obtained time-dependent creep behaviour accorded well with the cu~'es obtained from the proposed method. Many factors (such as ratio of long-term load to strength, slenderness ratio, steel ratio, and eccentricity ratio) were considered to obtain the regularity of influence of concrete creep on CFT structures. The analytical results can be consulted in the engineering practice and design.
基金This work was supported by College of Engineering and Technology,American University of the Middle East,Kuwait。
文摘The middle layer model has been used in recent years to better describe the connection behavior in composite structures.The influencing parameters including low pre-screw and high preload have the main effects on nonlinear behavior of the connection as well as the amplitude of the excitation force applied to the structure.Therefore,in this study,the effects of connection behavior on the general structure in two sections of increasing damping and reducing the stiffness of the structures that lead to non-linear phenomena have been investigated.Due to the fact that in composite structure we are faced to the limitation of increasing screw preload which tend to structural damage,so the investigation on the hybrid connection(metal-composite)behavior is conducted.In this research,using the two-dimensional middle layer theory,the stiffness properties of the connection are modeled by normal stiffness and the connection damping is modeled using the structural damping in the shear direction.Nonlinear frequency response diagrams have been extracted twice for two different excitation forces and then proposed by a high-order multitasking approximation according to the response range of the nonlinear finite element model for stiffness and damping of the connection.The effect of increasing the amplitude of the excitation force and decreasing the preload of the screw on the nonlinear behavior of the component has been extracted.The results show that the limited presented novel component model has been accurately verified on the model obtained from the vibration experimental test and the reduction of nonlinear model updating based on that is represented.The comparison results show good agreementwith a maximumof 1.33%error.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No.HEUCFR 1003
文摘Sandwich plate systems (SPS) are advanced materials that have begun to receive extensive attention in naval architecture and ocean engineering.At present, according to the rules of classification societies, a mixture of shell and solid elements are required to simulate an SPS.Based on the principle of stiffness decomposition, a new numerical simulation method for shell elements was proposed.In accordance with the principle of stiffness decomposition, the total stiffness can be decomposed into the bending stiffness and shear stiffness.Displacement and stress response related to bending stiffness was calculated with the laminated shell element.Displacement and stress response due to shear was calculated by use of a computational code write by FORTRAN language.Then the total displacement and stress response for the SPS was obtained by adding together these two parts of total displacement and stress.Finally, a rectangular SPS plate and a double-bottom structure were used for a simulation.The results show that the deflection simulated by the elements proposed in the paper is larger than the same simulated by solid elements and the analytical solution according to Hoff theory and approximate to the same simulated by the mixture of shell-solid elements, and the stress simulated by the elements proposed in the paper is approximate to the other simulating methods.So compared with calculations based on a mixture of shell and solid elements, the numerical simulation method given in the paper is more efficient and easier to do.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51421004 & 51405369)the National Key Basic Research Program of China (Grant No. 2015CB057400)+1 种基金the China Postdoctoral Science Foundation (Grant No. 2014M560766)the China Scholarship Council,and the Fundamental Research Funds for the Central Universities(Grant No. xjj2014107)
文摘This paper presents a novel parallel implementation technology for wave-based structural health monitoring (SHM) in laminated composite plates. The wavelet-based B-spline wavelet on he interval (BSWI) element is constructed according to Hamilton’s principle, and the element by element algorithm is parallelly executed on graphics processing unit (GPU) using compute unified device architecture (CUDA) to get the responses in full wave field accurately. By means of the Fourier spectral analysis method,the Mindlin plate theory is selected for wave modeling of laminated composite plates while the Kirchhoff plate theory predicts unreasonably phase and group velocities. Numerical examples involving wave propagation in laminated composite plates without and with crack are performed and discussed in detail. The parallel implementation on GPU is accelerated 146 times comparing with the same wave motion problem executed on central processing unit (CPU). The validity and accuracy of the proposed parallel implementation are also demonstrated by comparing with conventional finite element method (FEM) and the computation time has been reduced from hours to minutes. The damage size and location have been successfully determined according to wave propagation results based on delay-and-sum (DAS). The results show that the proposed parallel implementation of wavelet finite element method (WFEM) is very appropriate and efficient for wave-based SHM in laminated composite plates.
文摘A continuum damage mechanics (CDM) meso-model was derived for both intraply and interply progressive failure behaviors of a 2D woven-fabric composite laminate under a transversely low velocity impact.An in-plane anisotropic damage constitutive model of a 2D woven composite ply was derived based on CDM within a thermodynamic framework,an elastic constitutive model with damage for the fibre directions and an elastic-plastic constitutive model with damage for the shear direction.The progressive failure behavior of a 2D woven composite ply is determined by the damage internal variables in different directions with appropriate damage evolution equations.The interface between two adjacent 2D woven composite plies with different ply orientations was modeled by a traction-separation law based interface element.An isotropic damage constitutive law with CDM properties was used for the interface element,and a damage surface which combines stress and fracture mechanics failure criteria was employed to derive the damage initiation and evolution for the mixed-mode delamination of the interface elements.Numerical analysis and experiments were both carried out on a 2D woven glass fibre/epoxy laminate.The simulation results are in agreement with the experimental counterparts,verifying the progressive failure model of a woven composite laminate.The proposed model will enhance the understanding of dynamic deformation and progressive failure behavior of composite laminate structures in the low velocity impact process.