期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mechanochemical-Assisted Leaching of Lamp Phosphors: A Green Engineering Approach for Rare-Earth Recovery 被引量:4
1
作者 Steff Van Loy Koen Binnemans Tom Van Gerven 《Engineering》 2018年第3期398-405,共8页
Rare-earth elements (REEs) are essential metals for the design and development of sustainable energy applications, Recycling these elements from waste streams enriched in them is crucial for securing an independent ... Rare-earth elements (REEs) are essential metals for the design and development of sustainable energy applications, Recycling these elements from waste streams enriched in them is crucial for securing an independent future supply for sustainable applications, This study compares the mechanisms of mechan- ical activation prior to a hydrometallurgical acid-leaching process and a solvometallurgical mechanochemical leaching process for the recovery of REEs from green lamp phosphor, LaPO4:Ce3+, Th3+, After 60 min of processing time, the REE leaching rates showed a significant enhancement of 60% after cycled mechanical activation, and 98% after the combined mechanochemical leaching process, High-resolution transmission electron microscopy (HR-TEM) imaging disclosed the cause for the improved REE leaching rates: The improved leaching and leaching patterns could he attributed to changes in the crystal morphology from monocrystalline to polycrystalline, Reduction of the crystallite size to the nanoscale in a polycrystalline material creates irregular packing of chemical units, resulting in an increase in defect-rich grain boundaries in the crystals, which enhances the leaching process, A solvometallurgical method was developed to combine the mechanical activation and leaching process into a single step, which is beneficial for operational cost, This results in an efficient and simple process that provides an alternative and greener recycling route for lamp phosphor waste, 展开更多
关键词 MECHANOCHEMISTRY Rare-earth elements lamp phosphor waste Ball-milling Solvometallurgy
下载PDF
Perspectives for the recovery of rare earths from end-of-life fluorescent lamps 被引量:16
2
作者 K.Binnemans P.T.Jones 《Journal of Rare Earths》 SCIE EI CAS CSCD 2014年第3期195-200,共6页
This vision paper discusses the advantages and disadvantages of the three main options for the recycling of rare-earth ele- ments from end-of-life fluorescent lamps: (1) direct re-use of the lamp phosphor mixture; ... This vision paper discusses the advantages and disadvantages of the three main options for the recycling of rare-earth ele- ments from end-of-life fluorescent lamps: (1) direct re-use of the lamp phosphor mixture; (2) separation of the lamp phosphor mixture into the different phosphor components; (3) recovery of the rare-earth content. An overview is given of commercial activities in Europe in the domain of recycling of materials from end-of-life fluorescent lamps and the recovery of rare earths from these lamps. The collection of end-of-life fluorescent lamps is currently driven by a legal framework that prohibited the release of mercury to the environment. The contaminations of the lamp phosphor powders by mercury and by small glass particles of crushed fluorescent lamps are limiting factors in the recycling process. Research should be directed to an advanced clean-up of the reclaimed lamp phosphor fraction, and in particular to the removal of mercury and glass fragments. The recovery of rare earths from the lamp phosphors could be facilitated by taking advantage of the differences in resistance of the different lamp phosphors by chemical attack by inorganic ac- ids and bases. 展开更多
关键词 balance problem fluorescence lamps lamp phosphors LANTHANIDES rare-earth elements recycling urban mining
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部