Understanding land use land cover (LULC) change drivers at local scale is vital for development of management strategies to tackle further decline of natural resources. In connection to this, a study was conducted in ...Understanding land use land cover (LULC) change drivers at local scale is vital for development of management strategies to tackle further decline of natural resources. In connection to this, a study was conducted in Dire Dawa administration, Ethiopia to investigate the drivers for change in land use land cover and its impact on above ground biomass and regenerations of woody plants. A total of 160 respondents were selected randomly to collect data on drivers of LULC change. A multistage stratified cluster sampling was used for above ground biomass assessment. Nine sample plots of 10 m × 10 m size in each cluster and a total of 36 sample plots in all clusters were randomly established. In all sample plots, woody plants having >5 cm diameter were measured for their diameter at breast height (DBH), and biomass estimated using allometric equation. The study revealed that, cutting of woody plants for fuel wood and making charcoal, population growth, expansion of cultivated land, drought, settlement areas and livestock ranching are the major six important drivers of LULC change. The study also revealed that, the mean above ground biomass of woody plants in Dire Dawa Administration was 4.94 ton/ha, with maximum and minimum above ground biomass of 6.27 ton/ha and 3.90 ton/ha, respectively. The number of regenerants of tree species was low and only 36% of the plots had tree regenerants. Thus, proper woodland management strategies implementation, land use planning, afforestation and reforestation activities are recommended to minimize unprecedented LULC change in the study area.展开更多
文摘Understanding land use land cover (LULC) change drivers at local scale is vital for development of management strategies to tackle further decline of natural resources. In connection to this, a study was conducted in Dire Dawa administration, Ethiopia to investigate the drivers for change in land use land cover and its impact on above ground biomass and regenerations of woody plants. A total of 160 respondents were selected randomly to collect data on drivers of LULC change. A multistage stratified cluster sampling was used for above ground biomass assessment. Nine sample plots of 10 m × 10 m size in each cluster and a total of 36 sample plots in all clusters were randomly established. In all sample plots, woody plants having >5 cm diameter were measured for their diameter at breast height (DBH), and biomass estimated using allometric equation. The study revealed that, cutting of woody plants for fuel wood and making charcoal, population growth, expansion of cultivated land, drought, settlement areas and livestock ranching are the major six important drivers of LULC change. The study also revealed that, the mean above ground biomass of woody plants in Dire Dawa Administration was 4.94 ton/ha, with maximum and minimum above ground biomass of 6.27 ton/ha and 3.90 ton/ha, respectively. The number of regenerants of tree species was low and only 36% of the plots had tree regenerants. Thus, proper woodland management strategies implementation, land use planning, afforestation and reforestation activities are recommended to minimize unprecedented LULC change in the study area.