Rare earth elements (REE) were used to study the temporal and spatial processes of soil erosion from different depths and sections of a slope. Two simulated rainfall events were applied to a prepared plot with a slope...Rare earth elements (REE) were used to study the temporal and spatial processes of soil erosion from different depths and sections of a slope. Two simulated rainfall events were applied to a prepared plot with a slope of 22°. The total runoff and sediment yield were collected every minute during the rainfall events. During the first twenty minutes of the first rainfall event, the average rate of rill erosion and the accumulated sediment yield due to rill erosion was 0.5 and 0.3 times higher than for sheet erosion. During this time, most of the erosion occurred on the lower one third of the plot. After 20 min, rill erosion became the dominant process on the slope. The average acceleration in the rate of rill erosion, the rate of rill erosion and the accumulated sediment yield due to rill erosion were 42, 6 and 4 times higher than that of sheet erosion, respectively. During the first 35 minutes of the second rainfall event, the average acceleration in the rate of rill erosion was 6~9 times higher than that of sheet erosion. Afterwards, the slope became nearly stable with little change in either rill or sheet erosion rates. Initially, most of the rill erosion occurred in the lower third of the slope but later the preexisting rillhead in the middle section of the slope became reactivated and erosion in this section of the slope increased rapidly. These results indicate that REE tracer technology is a valuable tool for quantifying spatial and temporal changes in erosion from a soil slope.展开更多
Accelerated soil erosion and land degradation represent major environmental problems for agricultural lands.Reliable information on the rates of soil loss is urgently needed.The traditional techniques for documenting ...Accelerated soil erosion and land degradation represent major environmental problems for agricultural lands.Reliable information on the rates of soil loss is urgently needed.The traditional techniques for documenting rates of soil loss may meet this need,but face many limitations.The fallout radionuclides,especially 137 Cs and 210 Pb ex,are increasingly used as effective tracers to quantify soil erosion rates,and they represent a valuable complement to the existing classical methods.This paper aims to introduce the basis for assessing soil erosion rates on cultivated and uncultivated slopes by using 137 Cs and 210 Pb ex measurements,to compare the 137 Cs and 210 Pb ex reference inventories,and to report several case studies undertaken in the hilly area of Sichuan Basin and the Three Gorges area of China.展开更多
文摘Rare earth elements (REE) were used to study the temporal and spatial processes of soil erosion from different depths and sections of a slope. Two simulated rainfall events were applied to a prepared plot with a slope of 22°. The total runoff and sediment yield were collected every minute during the rainfall events. During the first twenty minutes of the first rainfall event, the average rate of rill erosion and the accumulated sediment yield due to rill erosion was 0.5 and 0.3 times higher than for sheet erosion. During this time, most of the erosion occurred on the lower one third of the plot. After 20 min, rill erosion became the dominant process on the slope. The average acceleration in the rate of rill erosion, the rate of rill erosion and the accumulated sediment yield due to rill erosion were 42, 6 and 4 times higher than that of sheet erosion, respectively. During the first 35 minutes of the second rainfall event, the average acceleration in the rate of rill erosion was 6~9 times higher than that of sheet erosion. Afterwards, the slope became nearly stable with little change in either rill or sheet erosion rates. Initially, most of the rill erosion occurred in the lower third of the slope but later the preexisting rillhead in the middle section of the slope became reactivated and erosion in this section of the slope increased rapidly. These results indicate that REE tracer technology is a valuable tool for quantifying spatial and temporal changes in erosion from a soil slope.
基金by the National Key Technology R&D Program (2011BAD31B03)the Important National Science & Technology Specific Projects (2009ZX07104-002-06)the ActionPlan for West Development of Chinese Academy of Sciences (KZCX2-XB3-09)
文摘Accelerated soil erosion and land degradation represent major environmental problems for agricultural lands.Reliable information on the rates of soil loss is urgently needed.The traditional techniques for documenting rates of soil loss may meet this need,but face many limitations.The fallout radionuclides,especially 137 Cs and 210 Pb ex,are increasingly used as effective tracers to quantify soil erosion rates,and they represent a valuable complement to the existing classical methods.This paper aims to introduce the basis for assessing soil erosion rates on cultivated and uncultivated slopes by using 137 Cs and 210 Pb ex measurements,to compare the 137 Cs and 210 Pb ex reference inventories,and to report several case studies undertaken in the hilly area of Sichuan Basin and the Three Gorges area of China.