[Objective] This study was to reveal the effect of different land use patterns on physical characteristics of soil water in the Yellow River wetland in Shaanxi Province.[Method]Taking Yellow River wetland in Shaanxi P...[Objective] This study was to reveal the effect of different land use patterns on physical characteristics of soil water in the Yellow River wetland in Shaanxi Province.[Method]Taking Yellow River wetland in Shaanxi Province as experimental plot,we compared the physical properties of the soil water under different land use patterns and studied the physical properties and the change law of soil water during the wetland degeneration process.[Result]Under different land use patterns,soil bulk density rose with the increase of soil depth.During the degeneration process of from river wetland to reclaimed wetland(paddy field),finally to abandoned land owing to salinization,the mean soil bulk density reduced correspondingly from 1.474 to 1.522 g/cm3,finally to 1.593 g/cm3 when abandoned.Accompanying wetland degeneration,soil became compact increasingly,and the indicators of soil porosity(total porosity,capillary porosity,non-capillary porosity)were also reduced with the change of land use patterns,in which,capillary porosity and total porosity reached the extremely significant level with the change of land use patterns,and non-capillary porosity reached significant level.The changes of soil porosity condition accelerated the deterioration of wetland.Under different land use patterns,the maximum soil moisture capacity,capillary moisture capacity and minimum moisture capacity all showed a similar change law.Compared with wetland,the maximum soil moisture capacity of reclaimed land(paddy field)and salinized land respectively decreased by 5.7% and 22.3%,capillary moisture capacity by 0.2% and 19.4%,minimum moisture capacity by 2.7% and 15.9%.Of the three land use patterns,wetland displayed both higher water holding capacity and water drainage capacity over reclaimed land(paddy field)and salinized land.By comparison with wetland,the reclaimed land(paddy field)and salinized land respectively decreased by 12.4% and 15.2% in total water holding capacity,and by 2.7% and 15.9% in total water drainage capacity.[Conclusion]To conserve the water resource in Yellow River wetland,regulate the hydrological cycle and enhance drought and water logging resistances,it should be noted that reasonable countermeasures be taken to exploit the state-owned forest land and paddy field around the wetland and the related resources.展开更多
[Objective] This study aimed to investigate the effects of different land use patterns on soil ecological environment. [Method] Total three representative land use patterns (corn field, cherry tree land, wood land) ...[Objective] This study aimed to investigate the effects of different land use patterns on soil ecological environment. [Method] Total three representative land use patterns (corn field, cherry tree land, wood land) were selected from Hongta District, Yuxi City, and under these three patterns, soil microbial quantity and activity were studied. [Result] Under the three land use patterns, soil microorganisms were domi- nated by bacteria; soil microbial quantity ranked as wood land's〉cheery tree land's〉 corn field's; and total microbial activity, catalase activity and urease activity all ranked as cherry tree land's〉wood land's〉corn field's. [Conclusion] Soil microbial activity and functions are related to farmland management measures, as well as land use pattern and soil nutrients.展开更多
Fractal theory is becoming an increasingly useful tool to describe soil structure dynamics for a better understanding of the performance of soil systems. Changes in land use patterns significantly affect soil physical...Fractal theory is becoming an increasingly useful tool to describe soil structure dynamics for a better understanding of the performance of soil systems. Changes in land use patterns significantly affect soil physical, chemical and biological properties. However, limited information is available on the fractal characteristics of deep soil layers under different land use patterns. In this study, the fractal dimensions of particle size distribution(PSD) and micro-aggregates in the 0–500 cm soil profile and soil anti-erodibility in the 0–10 cm soil profile for 10 typical land use patterns were investigated in the Zhifanggou Watershed on the Loess Plateau, China. The 10 typical land use patterns were: slope cropland, two terraced croplands, check-dam cropland, woodland, two shrublands, orchard, artificial and natural grasslands. The results showed that the fractal dimensions of PSD and micro-aggregates were all significantly influenced by soil depths, land use patterns and their interaction. The plantations of shrubland, woodland and natural grassland increased the amount of larger micro-aggregates, and decreased the fractal dimensions of micro-aggregates in the 0–40 cm soil profile. And they also improved the aggregate state and aggregate degree and decreased dispersion rate in the 0–10 cm soil profile. The results indicated that fractal theory can be used to characterize soil structure under different land use patterns and fractal dimensions of micro-aggregates were more effective in this regard. The natural grassland may be the best choice for improving soil structure in the study area.展开更多
Due to relatively strong human activities in the hilly area of Loess Plateau, the natural vegetation has been destroyed, and landscape pattern based on agricultural land matrix was land use mosaic composing of shrub l...Due to relatively strong human activities in the hilly area of Loess Plateau, the natural vegetation has been destroyed, and landscape pattern based on agricultural land matrix was land use mosaic composing of shrub land, grassland, woodland and orchard. This pattern has an important effect on soil moisture and soil nutrients. The Danangou catchment, a typical small catchment, was selected to study the effects of land use and its patterns on soil moisture and nutrients in this paper. The results are as follows: The comparisons of soil moisture among seven land uses for wet year and dry year were performed: (1) the average of soil moisture content for whole catchment was 12.11% in wet year, while it was 9.37% in dry year; (2) soil moisture among seven land uses was significantly different in dry year, but not in wet year; (3) from wet year to dry year, the profile type of soil moisture changed from decreasing type to fluctuation-type and from fluctuant type to increasing type; (4) the increasing trend in soil moisture from the top to foot of hillslope occurred in simple land use along slope, while complicated distribution of soil moisture was observed in multiple land uses along slope. The relationships between soil nutrients and land uses and landscape positions were analysed: (1) five nutrient contents of soil organic matter (SOM), total N (TN), available N (AN), total P (TP) and available P (AP) in hilly area were lower than that in other areas. SOM content was less than 1%, TN content less than 0.07%, and TP content between 0.05% and 0.06%; (2) SOM and TN contents in woodland, shrub land and grassland were significantly higher than that in fallow land and cropland, and higher level in soil fertility was found in crop-fruit intercropping land among croplands; (3) soil nutrient distribution and responses to landscape positions were variable depending on slope and the location of land use types.展开更多
To satisfy the growing of land demand from economic development,a large scale of land reclamation from sea has been carried out in Inner Lingdingyang Bay in the Zhujiang(Pearl)River estuary in recent years.As a result...To satisfy the growing of land demand from economic development,a large scale of land reclamation from sea has been carried out in Inner Lingdingyang Bay in the Zhujiang(Pearl)River estuary in recent years.As a result,the tidal flat and the water channels became narrow,the frequency of floods increased,and the environment was un-dermined.Guangzhou Marine Geological Survey(GMGS)conducted an integrated project for marine geo-environ-ment and geo-hazards survey in 2003.With the integration of multi-temporal remote sensing images of 1977,1978,1988,1996,and 2003,GIS spatial analyzing approach and GPS technique,as well as field data and other background data of the region,this research investigated the comprehensive characteristics and the drivers of coastal land use dy-namics and shoreline changes in Inner Lingdingyang Bay.The results reveal that the reclaimed coastal land was mainly for agriculture and aquaculture in early years,but now they are used for construction sites of harbors and in-dustries,especially high-tech industry.展开更多
Characterizing soil particle-size distribution is a key measure towards soil property.The purpose of this study was to evaluate the multifractal characteristics of soil particle-size distribution among different land-...Characterizing soil particle-size distribution is a key measure towards soil property.The purpose of this study was to evaluate the multifractal characteristics of soil particle-size distribution among different land-use from a purple soil catchment and to generalize the spatial variation trend of multifractal parameters across the catchment.A total of 84 soil samples were collected from four kinds of land use patterns(dry land,orchard,paddy,and forest)in an agricultural catchment in the Three Gorges Reservoir Region,China.The multifractal analysis method was applied to quantitatively characterize the soil particle size distribution.Six soil particle size distribution(PSD)multifractal parameters(D(0),D(1),D(2),(35)a(q),(35)f[a(q)],α(0))were computed.Additionally,a geostatistical analysis was employed to reveal the spatial differentiation and map the spatial distribution of these parameters.Evident multifractal characteristics were found.The trend of generalized dimension spectrum of four land use patterns was basically consistent with the range of 0.8 to 2.0.However,orchard showed the largest monotonic decline,while the forest demonstrated the smallest decrease.D(0)of the four land use patterns were ranked as:dry land<orchard<forest<paddy,the order of D(1)was:dry land<paddy<orchard<forest,D(2)presented a rand-size relationship as dry land<forest<paddy<orchard.Furthermore,all land-use patterns presented asΔf[α(q)]<0.The rand-size relationship ofα(0)was same as D(0).The best-fitting model for D(0),D(1),D(2)andΔf[α(q)]was spherical model,forΔα(q)was gaussian model,and forα(0)was exponential model with structure variance ratio was 1.03%,49.83%,0.84%,1.48%,22.20%and 10.60%,respectively.The results showed that soil particles of each land use pattern were distributed unevenly.The multifractal parameters under different land use have significant differences,except forΔα(q).Differences in the composition of soil particles lead to differences in the multifractal properties even though they belong to the same soil texture.Farming behavior may refine particles and enhance the heterogeneity of soil particle distribution.Our results provide an effective reference for quantifying the impact of human activities on soil system in the Three Gorges Reservoir region.展开更多
Growth of annual plants in arid environments depends largely on rainfall pulses. An increased understanding of the effects of different rainfall patterns on plant growth is critical to predicting the potential respons...Growth of annual plants in arid environments depends largely on rainfall pulses. An increased understanding of the effects of different rainfall patterns on plant growth is critical to predicting the potential responses of plants to the changes in rainfall regimes, such as rainfall intensity and duration, and length of dry intervals. In this study, we investigated the effects of different rainfall patterns(e.g. small rainfall event with high frequency and large rainfall event with low frequency) on biomass, growth characteristics and vertical distribution of root biomass of annual plants in Horqin Sandy Land, Inner Mongolia of China during the growing season(from May to August) of 2014. Our results showed that the rainfall patterns, independent of total rainfall amount, exerted strong effects on biomass, characteristics of plant growth and vertical distribution of root biomass. Under a constant amount of total rainfall, the aboveground biomass(AGB), belowground biomass(BGB), plant cover, plant height, and plant individual and species number increased with an increase in rainfall intensity. Changes in rainfall patterns also altered the percentage contribution of species biomass to the total AGB, and the percentage of BGB at different soil layers to the total BGB. Consequently, our results indicated that increased rainfall intensity in future may increase biomass significantly, and also affect the growth characteristics of annual plants.展开更多
With Longzhou County as example, the weed species, distributions, domi- nant populations and diversity indexes in corn, sugarcane, pineapple, banana and mango fields under different land use patterns in southwest Guan...With Longzhou County as example, the weed species, distributions, domi- nant populations and diversity indexes in corn, sugarcane, pineapple, banana and mango fields under different land use patterns in southwest Guangxi were investi- gated. The results showed that there were 27 families 54 species of weeds in sampling area. Eleven species were Gramineae and ten species were Compositae. There were eight families 13 species in corn fields, ten families 20 species in sug- arcane fields, 12 families 18 species in pineapple fields, ten families 11 species in banana fields and nine families 14 species in mango fields. Bidens bipinnata, Eupa- torium odoratum and Emilia sonchifolia of Compositae were generally occurred with serious harm. Roegneria kamoji, Stellaria media and Bothriochloa intermedia of Gramineae were widely occurred. Weed community made up of Compositae + Gramineae + Oxalidaceae was the main form of dryland weed. The Pielou uniformi- ty of the five use patterns in the studying area were 0.967, 0.964, 0,947, 0.969 and 0.962, respectively, which were high.展开更多
With the objectives to acquire the fundamental dat a of the territorial resource, understand the impacts of human activit ies on the land use and cover patterns and evaluate the potential of the future exploitation, a...With the objectives to acquire the fundamental dat a of the territorial resource, understand the impacts of human activit ies on the land use and cover patterns and evaluate the potential of the future exploitation, an intensive land cover classification with an accuracy of 93% has been completed for North Ningxia by remote sen sing technique based on the adoption of a combination method composed o f texture training, maximum likelihood classification and post-processing such as re-allocation and aggregation. This classification result was incorporated with the contemporaneous socio-economic and meteorological d ata for cross-sectional regression modelling to reveal the spatial dete rminants of the land cover patterns and understand the human-environmen tal relationships. A tentative evaluation on the potential of soil exp loitation in the near future was carried out in combination with our land use and cover change detection results aiming at supplying some useful references for the central and local governments in their sustainable l and use planning.展开更多
In this study,taking the typical terracing land in Wushan County of Chongqing Municipality for example,we study the distribution of soil nutrients in the terracing land under different land use patterns in Three Gorge...In this study,taking the typical terracing land in Wushan County of Chongqing Municipality for example,we study the distribution of soil nutrients in the terracing land under different land use patterns in Three Gorges Reservoir Area. We conduct field survey and sampling on three different land use patterns( cash crop land,food crop land and abandoned land),and do the indoor experimental analysis of soil nutrient indicators. The results indicate that there is significant or very significant impact on soil nutrients under different land use patterns. The content of soil organic matter declines in sequence from abandoned land,food crop land to cash crop land; the content of soil N declines in sequence from cash crop land,abandoned land to food crop land; the content of soil P declines in sequence from cash crop land,food crop land to abandoned land; the content of soil K declines in sequence from abandoned land,cash crop land to food crop land. The result is in close relation to land use patterns,human cultivation activity,land disturbance and application of fertilizer.展开更多
Extensive land use will cause many environmental problems.It is an urgent task to improve land use efficiency and optimize land use patterns.In recent years,due to the flow decrease,the Guanzhong Basin in Shaanxi Prov...Extensive land use will cause many environmental problems.It is an urgent task to improve land use efficiency and optimize land use patterns.In recent years,due to the flow decrease,the Guanzhong Basin in Shaanxi Province is confronted with the problem of insufficient water resources reserve.Based on the Coupled Ground-Water and Surface-Water Flow Model(GSFLOW),this paper evaluates the response of water resources in the basin to changes in land use patterns,optimizes the land use pattern,improves the ecological and economic benefits,and the efficiency of various spatial development,providing a reference for ecological protection and high-quality development of the Yellow River Basin.The research shows that the land use pattern in the Guanzhong Basin should be further optimized.Under the condition of considering ecological and economic development,the percentage change of the optimum area of farmland,forest,grassland,water area,and urban area compared with the current land use area ratio is+2.3,+2.4,-6.1,+0.2,and+1.6,respectively.The economic and ecological value of land increases by14.1%and 3.1%,respectively,and the number of water resources can increase by 2.5%.展开更多
For almost three decades, China has been undergoing significant transition from a planned economy to a market economy. Fast-paced economic growth and urbanization, interacting with market-oriented reforms in land re- ...For almost three decades, China has been undergoing significant transition from a planned economy to a market economy. Fast-paced economic growth and urbanization, interacting with market-oriented reforms in land re- sources allocation, have caused profound spatial restructuring of Chinese cities. This paper examines urban expansion and land use reconfiguration in Shanghai’s central city from 1979 to 2002, with a special focus on the effect of the adoption of the land-leasing system in 1988. The empirical research, which employs GIS-based spatial analysis tech- niques to explore land use data for multiple years, indicates fundamental changes in the spatial characteristics of urban development in Shanghai after this important land policy reform.展开更多
Heavy metal accumulation and its influential factors were studied in the different land use soils, which would provide a theoretical basis for controlling the content of heavy metals in soils. To identify the effects ...Heavy metal accumulation and its influential factors were studied in the different land use soils, which would provide a theoretical basis for controlling the content of heavy metals in soils. To identify the effects of land use on the accumulation of heavy metals in soils, 148 soil samples were collected from four land use patterns including greenhouse field, uncovered vegetable field, maize field, and forest field in Siping area of Jilin Province, China, and Cr, Ni, Cu, As, Cd, Pb, and Zn contents of those samples were determined with ICP and ICP-Mass. The result showed that there was a rather large difference in effects of the accumulation of Cr, Ni, Cu, As, Cd, and Zn in soils under different land use patterns, except Pb. Based on the assessment which compared with background concentrations in soil, the higher accumulation of heavy metals was found in greenhouse and uncovered vegetable field, much less in maize field and forest field. The mean contents of heavy metals in soils from high to low were arranged in order of greenhouse field, uncovered vegetable field, maize field, and forest field. Cd and Cu had relatively serious accumulation in soils compared to Cr, Ni, As, and Zn. The mean content of Cd in greenhouse field was 0.467 mg kg-x,which exceeded the grade II of the Chinese Soil Quality Criterion GB15618-1995 (6.5 〈pH〈7.5) for Cd standard of 0.3 mg kg^-1, while it was 5.2 times of Cd standard in the forest fields. The mean contents ofCr, Ni, Cu, As, Pb, and Zn in soils under four land use patterns were lower than the grade II of the Chinese Soil Quality Criterion. Compared with the soil cultivated years, the agricultural chemical compounds and manures application, especially the quality and quantity of applied fertilizer was one of the main reasons for leading to different accumulation of heavy metals in soils under the studied land use patterns. The accumulation of heavy metals, such as Cr, Ni, Cu, As, Cd, and Zn in soils was significantly affected by land use patterns, among them the accumulation of heavy metals in greenhouse soils was higher than others. It is suggested that the application of chemical fertilizer, organic fertilizer, and pesticides with high contents of heavy metals should be avoided to prevent the accumulation of heavy metal and keep high quality soils for sustainable use.展开更多
The terrestrial ecosystem may be either a source or a sink of CH_4 in rice paddies, depending, to a great extent, on the change of ecosystem types and land use patterns. CH_4 emission fluxes from paddy fields under 4 ...The terrestrial ecosystem may be either a source or a sink of CH_4 in rice paddies, depending, to a great extent, on the change of ecosystem types and land use patterns. CH_4 emission fluxes from paddy fields under 4 cultivation patterns (conventional plain culture of rice(T1), no-tillage and ridge culture of rice(T2), no-tillage and ridge culture of rice and wheat (T3), and rice-wheat rotation(T4)) were measured with the closed chamber technique in 1996 and 1998 in Chongqing, China. The results showed that differences existed in CH_4 emission from paddy fields under these land management practices. In 1996 and 1998, CH_4 emission was 71 48% and 78 82%(T2), 65 93% and 57 18%(T3), and 61 53% and 34 22%(T4) of that in T1 during the rice growing season. During the non-rice growing season, CH_4 emission from rice fields was 76 23% in T2 and 38 69% in T1 The accumulated annual CH_4 emission in T2, T3 and T4 in 1996 decreased by 33 53%, 63 30% and 65 73%, respectively, as compared with that in T1 In 1998, the accumulated annual CH_4 emission in T1, T2, T3 and T4 was 116 96 g/m^2, 68 44 g/m^2, 19 70 g/m^2 and 11 80 g/m^2, respectively. Changes in soil physical and chemical properties, in thermal and moisture conditions in the soil and in rice plant growth induced by different land use patterns were the dominant causes for the difference in CH_4 emission observed. The relative contribution of various influencing factors to CH_4 emission from paddy fields differed significantly under different land use patterns. However, the general trend was that chlorophyll content in rice leaves, air temperature and temperature at the 5 cm soil layer play a major role in CH_4 emission from paddy fields and the effects of illumination, relative humidity and water layer depth in the paddy field and CH_4 concentration in the crop canopy were relatively non-significant. Such conservative land use patterns as no-tillage and ridge culture of rice with or without rotation with wheat are thought to be beneficial to reducing CH_4 emission from paddy fields and are, therefore, recommended as a significant solution to the problems of global(climatic) change.展开更多
Changes in soil biological and biochemical properties under different land uses in the subtropical region of China were investigated in order to develop rational cultivation and fertilization management. A small water...Changes in soil biological and biochemical properties under different land uses in the subtropical region of China were investigated in order to develop rational cultivation and fertilization management. A small watershed of subtropical region of China was selected for this study. Land uses covered paddy fields, vegetable farming, fruit trees, upland crops, bamboo stands, and forestry. Soil biological and biochemical properties included soil organic C and nutrient contents, mineralization of soil organic C, and soil microbial biomass and community functional diversity. Soil organic C and total N contents, microbial biomass C and N, and respiration intensity under different land uses were changed in the following order: paddy fields (and vegetable farming) 〉 bamboo stands 〉 fruit trccs (and upland). The top surface (0-15 cm) paddy fields (and vegetable farming) were 76.4 and 80.8% higher in soil organic C and total N contents than fruit trees (and upland) soils, respectively. Subsurface paddy soils (15-30 cm) were 59.8 and 67.3% higher in organic C and total N than upland soils, respectively. Soil microbial C, N and respiration intensity in paddy soils (0-15 cm) were 6.36, 3.63 and 3.20 times those in fruit tree (and upland) soils respectively. Soil microbial metabolic quotient was in the order: fruit trees (and upland) 〉 forestry 〉 paddy fields. Metabolic quotient in paddy soils was only 47.7% of that in fruit tree (and upland) soils. Rates of soil organic C mineralization during incubation changed in the order: paddy fields 〉 bamboo stands 〉 fruit trees (and upland) and soil bacteria population: paddy fields 〉 fruit trees (and upland) 〉 forestry. No significant difference was found for fungi and actinomycetes populations. BIOLOG analysis indicated a changing order of paddy fields 〉 fruit trees (and upland) 〉 forestry in values of the average well cell development (AWCD) and functional diversity indexes of microbial community. Results also showed that the conversion from paddy fields to vegetable farming for 5 years resulted in a dramatic increase in soil available phosphorus content while insignificant changes in soil organic C and total N content due to a large inputs of phosphate fertilizers. This conversion caused 53, 41.5, and 41.3% decreases in soil microbial biomass C, N, and respiration intensity, respectively, while 23.6% increase in metabolic quotient and a decrease in soil organic C mineralization rate. Moreover, soil bacteria and actinomycetes populations were increased slightly, while fungi population increased dramatically. Functional diversity indexes of soil microbial community decreased significantly. It was concluded that land uses in the subtropical region of China strongly affected soil biological and biochemical properties. Soil organic C and nutrient contents, mineralization of organic C and functional diversity of microbial community in paddy fields were higher than those in upland and forestry. Overuse of chemical fertilizers in paddy fields with high fertility might degrade soil biological properties and biochemical function, resulting in deterioration of soil biological quality.展开更多
We selected four kinds of land use types from Caohai wetlands of Guizhou plateau(a total number of 32 soil profiles) to study the distribution characteristics of organic carbon content in soil. With different ways o...We selected four kinds of land use types from Caohai wetlands of Guizhou plateau(a total number of 32 soil profiles) to study the distribution characteristics of organic carbon content in soil. With different ways of land use, the organic carbon content of soil profiles and organic carbon density show the tendency of decreasing firstly and then increasing from top to bottom. With the increase of depth, the vertical difference becomes smaller first and then starts increasing. Land reclamation reduces the soil organic carbon content and density, changing its distribution structure in topsoil. The average content of organic carbon in Caohai wetlands are as follows: lake bed silt [ marsh wetland [ farmland [ woodland, the average organic carbon content of lake bed silt, marsh wetland,farmland and woodland are 16.40, 2.94, 1.81 and 1.08 %,respectively. Land reclamation reduces the organic carbon content of soil, therefore the conversion of cultivated lands to wetlands and the increase of forest coverage will help to fix the organic carbon in soil and increase its reserves.展开更多
Rapid land landscape change has taken place in many arid and semi-arid regions such as the vulnerable ecological area over the last decade. In this paper, we quantified land landscape change of Yulin in this area betw...Rapid land landscape change has taken place in many arid and semi-arid regions such as the vulnerable ecological area over the last decade. In this paper, we quantified land landscape change of Yulin in this area between 1985 and 2000 using remote sensing and GIS. It was found that fallow landscape decreased by 125,148 hm^2 while grassland and woodland increased by 107,975 hm^2 and 17,157 hm^2, respectively. The major factors responsible for these changes are identified as the change in the government policy on preserving the environment, continued growth in mining, and urbanization. The efforts in restoring the deteriorated ecosystem have reaped certain benefits in reducing the spatial extent of sandy land through replacement by non-irrigated farmland, woodland and grassland. On the other hand, continued expansion of mining industry and urbanization has exerted adverse impacts on the land landscape. At present regional economic development conflicts directly with the protection of the natural environment. Such a conflict has caused the destruction to the land resources and fragmentation of the landscape accompanied by land desertification, the case is even serious in some localities.展开更多
The rocky desert in a karst area directly causes the lack of soil, water and forest, hence leading to the poverty there. In 1990, the villagers from the Muzhe Village in Benggu Township, Xichou County, Yunnan declared...The rocky desert in a karst area directly causes the lack of soil, water and forest, hence leading to the poverty there. In 1990, the villagers from the Muzhe Village in Benggu Township, Xichou County, Yunnan declared a war against rocky desert in an attempt to ask the fields for more yields. They invented a distinctive land rehabilitation and sustainable use pattern called “transforming heavenand earth” that had been practiced in Southwest China’s karst areas. The key mechanism of the pattern was to develop terraced fields with well conserved soil, water and fertility by exploding rocks in the fields, building stone walls, gathering more soil, and improving soil quality and productivity for the fields in combination with building of irrigation facilities and roads, as well as with forestation and agriculture structure adjustment. The purpose of the pattern was to alleviate poverty in the karst areas by improving soil productivity and promoting agriculturaldevelopment. A typical area was studied with the help of Participatory Rural Appraisal (PRA) and the pattern was carried out there for fifteen years, have produced excellent ecological benefits and good economic benefits. Its application in the area approved that it was a sustainable land use pattern for rocky desert areas.展开更多
Study on the regional characteristics of soil organic carbon (SOC) density in farmland will not only contribute greatly to the technique of soil productivity enhancement, but also give evidences of technique selecti...Study on the regional characteristics of soil organic carbon (SOC) density in farmland will not only contribute greatly to the technique of soil productivity enhancement, but also give evidences of technique selection and policy making for carbon sequestration in soils. Based on the second national soil survey of China, the situation of SOC density in the plow layer of farmland was analyzed under different land use patterns. Results showed that SOC density in the plow layer was about 3.15 kg m^-2 in average ranging from 0.81 to 12.68 kg m^-2. The highest density was found in the southeastern region with an average of 3.63 kg ma, while the lowest occurring in the northwestern region with an average of 3.00 kg m^-2. The variation coefficient of SOC density in the plow layer of farmland was 57%, which was 35% lower than that of non-farmland soils. Compared to SOC density in the dry land, SOC density in paddy soils was 13% higher with a lower variation coefficient between different regions. In addition, the relationships between the climatic factors (annual average temperature and precipitation) and SOC density were lower in farmland than those in non-farmland soils, as well as lower in paddy soils than those in dry land of farmland. These results suggest that anthropogenic disturbances have great impacts on SOC density in farmland soils, especially in paddy soils, indicating that Chinese rice cropping may contribute greatly to the SOC stability and sequestration in paddy field.展开更多
Serious soil erosion is one of the major issues threatening sustainable land use in semiarid areas, especially in the Loess Plateau of China. Understanding the effects of land use on soil and water loss is important f...Serious soil erosion is one of the major issues threatening sustainable land use in semiarid areas, especially in the Loess Plateau of China. Understanding the effects of land use on soil and water loss is important for sustainable land use strategy. Two sub-catchments: catchment A (CA) and catchment B (CB) with distinct land uses were selected to measure soil moisture, runoff and soil nutrient loss in Da Nangou catchment of the Loess Plateau of China. The effects of land use patterns on runoff and nutrient losses were analyzed based on soil moisture pattern by kriging and soil nutrients using multiple regression model. The results indicated that there were significant differences in runoff yield and soil nutrient losses between the two sub-catchments. With similar land uses, the CA produced an average sediment yield of 49 kg ha^-1 and 22.27 kg ha^-1 during two storm events. Meanwhile, there was almost no runoff in the CB with dissimilar land uses during the same events. Buffer zones should be established to re-absorb runoff and to trap sediments in catchment with similar land use structure such as the CA. Moreover, land use management strategy aiming to increase the infiltration threshold of hydrological response units could decrease the frequency of runoff occurrence on a slope and catchment scale.展开更多
基金Supported by National Natural Science Foundation of China(40871119)Key Science and Technology Program of Shaanxi Province,China(2007K01-15-1)~~
文摘[Objective] This study was to reveal the effect of different land use patterns on physical characteristics of soil water in the Yellow River wetland in Shaanxi Province.[Method]Taking Yellow River wetland in Shaanxi Province as experimental plot,we compared the physical properties of the soil water under different land use patterns and studied the physical properties and the change law of soil water during the wetland degeneration process.[Result]Under different land use patterns,soil bulk density rose with the increase of soil depth.During the degeneration process of from river wetland to reclaimed wetland(paddy field),finally to abandoned land owing to salinization,the mean soil bulk density reduced correspondingly from 1.474 to 1.522 g/cm3,finally to 1.593 g/cm3 when abandoned.Accompanying wetland degeneration,soil became compact increasingly,and the indicators of soil porosity(total porosity,capillary porosity,non-capillary porosity)were also reduced with the change of land use patterns,in which,capillary porosity and total porosity reached the extremely significant level with the change of land use patterns,and non-capillary porosity reached significant level.The changes of soil porosity condition accelerated the deterioration of wetland.Under different land use patterns,the maximum soil moisture capacity,capillary moisture capacity and minimum moisture capacity all showed a similar change law.Compared with wetland,the maximum soil moisture capacity of reclaimed land(paddy field)and salinized land respectively decreased by 5.7% and 22.3%,capillary moisture capacity by 0.2% and 19.4%,minimum moisture capacity by 2.7% and 15.9%.Of the three land use patterns,wetland displayed both higher water holding capacity and water drainage capacity over reclaimed land(paddy field)and salinized land.By comparison with wetland,the reclaimed land(paddy field)and salinized land respectively decreased by 12.4% and 15.2% in total water holding capacity,and by 2.7% and 15.9% in total water drainage capacity.[Conclusion]To conserve the water resource in Yellow River wetland,regulate the hydrological cycle and enhance drought and water logging resistances,it should be noted that reasonable countermeasures be taken to exploit the state-owned forest land and paddy field around the wetland and the related resources.
文摘[Objective] This study aimed to investigate the effects of different land use patterns on soil ecological environment. [Method] Total three representative land use patterns (corn field, cherry tree land, wood land) were selected from Hongta District, Yuxi City, and under these three patterns, soil microbial quantity and activity were studied. [Result] Under the three land use patterns, soil microorganisms were domi- nated by bacteria; soil microbial quantity ranked as wood land's〉cheery tree land's〉 corn field's; and total microbial activity, catalase activity and urease activity all ranked as cherry tree land's〉wood land's〉corn field's. [Conclusion] Soil microbial activity and functions are related to farmland management measures, as well as land use pattern and soil nutrients.
基金supported by the Strategic Technology Project of Chinese Academy of Sciences (XDA05060300)the Science and Technology R&D Program of Shaanxi Province (2011KJXX63)
文摘Fractal theory is becoming an increasingly useful tool to describe soil structure dynamics for a better understanding of the performance of soil systems. Changes in land use patterns significantly affect soil physical, chemical and biological properties. However, limited information is available on the fractal characteristics of deep soil layers under different land use patterns. In this study, the fractal dimensions of particle size distribution(PSD) and micro-aggregates in the 0–500 cm soil profile and soil anti-erodibility in the 0–10 cm soil profile for 10 typical land use patterns were investigated in the Zhifanggou Watershed on the Loess Plateau, China. The 10 typical land use patterns were: slope cropland, two terraced croplands, check-dam cropland, woodland, two shrublands, orchard, artificial and natural grasslands. The results showed that the fractal dimensions of PSD and micro-aggregates were all significantly influenced by soil depths, land use patterns and their interaction. The plantations of shrubland, woodland and natural grassland increased the amount of larger micro-aggregates, and decreased the fractal dimensions of micro-aggregates in the 0–40 cm soil profile. And they also improved the aggregate state and aggregate degree and decreased dispersion rate in the 0–10 cm soil profile. The results indicated that fractal theory can be used to characterize soil structure under different land use patterns and fractal dimensions of micro-aggregates were more effective in this regard. The natural grassland may be the best choice for improving soil structure in the study area.
文摘Due to relatively strong human activities in the hilly area of Loess Plateau, the natural vegetation has been destroyed, and landscape pattern based on agricultural land matrix was land use mosaic composing of shrub land, grassland, woodland and orchard. This pattern has an important effect on soil moisture and soil nutrients. The Danangou catchment, a typical small catchment, was selected to study the effects of land use and its patterns on soil moisture and nutrients in this paper. The results are as follows: The comparisons of soil moisture among seven land uses for wet year and dry year were performed: (1) the average of soil moisture content for whole catchment was 12.11% in wet year, while it was 9.37% in dry year; (2) soil moisture among seven land uses was significantly different in dry year, but not in wet year; (3) from wet year to dry year, the profile type of soil moisture changed from decreasing type to fluctuation-type and from fluctuant type to increasing type; (4) the increasing trend in soil moisture from the top to foot of hillslope occurred in simple land use along slope, while complicated distribution of soil moisture was observed in multiple land uses along slope. The relationships between soil nutrients and land uses and landscape positions were analysed: (1) five nutrient contents of soil organic matter (SOM), total N (TN), available N (AN), total P (TP) and available P (AP) in hilly area were lower than that in other areas. SOM content was less than 1%, TN content less than 0.07%, and TP content between 0.05% and 0.06%; (2) SOM and TN contents in woodland, shrub land and grassland were significantly higher than that in fallow land and cropland, and higher level in soil fertility was found in crop-fruit intercropping land among croplands; (3) soil nutrient distribution and responses to landscape positions were variable depending on slope and the location of land use types.
基金Under the auspices of China Geological Survey(CGS)(No.200311000006)
文摘To satisfy the growing of land demand from economic development,a large scale of land reclamation from sea has been carried out in Inner Lingdingyang Bay in the Zhujiang(Pearl)River estuary in recent years.As a result,the tidal flat and the water channels became narrow,the frequency of floods increased,and the environment was un-dermined.Guangzhou Marine Geological Survey(GMGS)conducted an integrated project for marine geo-environ-ment and geo-hazards survey in 2003.With the integration of multi-temporal remote sensing images of 1977,1978,1988,1996,and 2003,GIS spatial analyzing approach and GPS technique,as well as field data and other background data of the region,this research investigated the comprehensive characteristics and the drivers of coastal land use dy-namics and shoreline changes in Inner Lingdingyang Bay.The results reveal that the reclaimed coastal land was mainly for agriculture and aquaculture in early years,but now they are used for construction sites of harbors and in-dustries,especially high-tech industry.
基金funded by the National Key R&D Program of China(2017YFD0800505)Chongqing Key R&D Project of Technology Innovation and Application(NO.cstc2018jscxmszd X0055)。
文摘Characterizing soil particle-size distribution is a key measure towards soil property.The purpose of this study was to evaluate the multifractal characteristics of soil particle-size distribution among different land-use from a purple soil catchment and to generalize the spatial variation trend of multifractal parameters across the catchment.A total of 84 soil samples were collected from four kinds of land use patterns(dry land,orchard,paddy,and forest)in an agricultural catchment in the Three Gorges Reservoir Region,China.The multifractal analysis method was applied to quantitatively characterize the soil particle size distribution.Six soil particle size distribution(PSD)multifractal parameters(D(0),D(1),D(2),(35)a(q),(35)f[a(q)],α(0))were computed.Additionally,a geostatistical analysis was employed to reveal the spatial differentiation and map the spatial distribution of these parameters.Evident multifractal characteristics were found.The trend of generalized dimension spectrum of four land use patterns was basically consistent with the range of 0.8 to 2.0.However,orchard showed the largest monotonic decline,while the forest demonstrated the smallest decrease.D(0)of the four land use patterns were ranked as:dry land<orchard<forest<paddy,the order of D(1)was:dry land<paddy<orchard<forest,D(2)presented a rand-size relationship as dry land<forest<paddy<orchard.Furthermore,all land-use patterns presented asΔf[α(q)]<0.The rand-size relationship ofα(0)was same as D(0).The best-fitting model for D(0),D(1),D(2)andΔf[α(q)]was spherical model,forΔα(q)was gaussian model,and forα(0)was exponential model with structure variance ratio was 1.03%,49.83%,0.84%,1.48%,22.20%and 10.60%,respectively.The results showed that soil particles of each land use pattern were distributed unevenly.The multifractal parameters under different land use have significant differences,except forΔα(q).Differences in the composition of soil particles lead to differences in the multifractal properties even though they belong to the same soil texture.Farming behavior may refine particles and enhance the heterogeneity of soil particle distribution.Our results provide an effective reference for quantifying the impact of human activities on soil system in the Three Gorges Reservoir region.
基金supported by the Strategic Leading Science and Technology Projects of Chinese Academy of Sciences (XDA05050201-04-01)the National Natural Science Foundation of China (41371053, 31500369)the ‘One Hundred Talent’ Program of Chinese Academy of Sciences (Y451H31001)
文摘Growth of annual plants in arid environments depends largely on rainfall pulses. An increased understanding of the effects of different rainfall patterns on plant growth is critical to predicting the potential responses of plants to the changes in rainfall regimes, such as rainfall intensity and duration, and length of dry intervals. In this study, we investigated the effects of different rainfall patterns(e.g. small rainfall event with high frequency and large rainfall event with low frequency) on biomass, growth characteristics and vertical distribution of root biomass of annual plants in Horqin Sandy Land, Inner Mongolia of China during the growing season(from May to August) of 2014. Our results showed that the rainfall patterns, independent of total rainfall amount, exerted strong effects on biomass, characteristics of plant growth and vertical distribution of root biomass. Under a constant amount of total rainfall, the aboveground biomass(AGB), belowground biomass(BGB), plant cover, plant height, and plant individual and species number increased with an increase in rainfall intensity. Changes in rainfall patterns also altered the percentage contribution of species biomass to the total AGB, and the percentage of BGB at different soil layers to the total BGB. Consequently, our results indicated that increased rainfall intensity in future may increase biomass significantly, and also affect the growth characteristics of annual plants.
基金Supported by Public Welfare Fund Project of Guangxi(GXNYRKS201506)~~
文摘With Longzhou County as example, the weed species, distributions, domi- nant populations and diversity indexes in corn, sugarcane, pineapple, banana and mango fields under different land use patterns in southwest Guangxi were investi- gated. The results showed that there were 27 families 54 species of weeds in sampling area. Eleven species were Gramineae and ten species were Compositae. There were eight families 13 species in corn fields, ten families 20 species in sug- arcane fields, 12 families 18 species in pineapple fields, ten families 11 species in banana fields and nine families 14 species in mango fields. Bidens bipinnata, Eupa- torium odoratum and Emilia sonchifolia of Compositae were generally occurred with serious harm. Roegneria kamoji, Stellaria media and Bothriochloa intermedia of Gramineae were widely occurred. Weed community made up of Compositae + Gramineae + Oxalidaceae was the main form of dryland weed. The Pielou uniformi- ty of the five use patterns in the studying area were 0.967, 0.964, 0,947, 0.969 and 0.962, respectively, which were high.
基金The Sino-Belgian co-operation project on Northwest China funded by the Federal Office for the Scientific, Technical and Cultural Affairs (OSTC) of the Belgium Government, No.BL/10/C15
文摘With the objectives to acquire the fundamental dat a of the territorial resource, understand the impacts of human activit ies on the land use and cover patterns and evaluate the potential of the future exploitation, an intensive land cover classification with an accuracy of 93% has been completed for North Ningxia by remote sen sing technique based on the adoption of a combination method composed o f texture training, maximum likelihood classification and post-processing such as re-allocation and aggregation. This classification result was incorporated with the contemporaneous socio-economic and meteorological d ata for cross-sectional regression modelling to reveal the spatial dete rminants of the land cover patterns and understand the human-environmen tal relationships. A tentative evaluation on the potential of soil exp loitation in the near future was carried out in combination with our land use and cover change detection results aiming at supplying some useful references for the central and local governments in their sustainable l and use planning.
基金Supported by National Natural Science Foundation of China(41471234)Chongqing Basic and Cutting-edge Research Project(cstc2015jcyjB X0141)+2 种基金Natural Science Foundation of Chongqing(CSTC,2010BB0326)Social Sciences Project of Chongqing Municipal Education Commission(08JWSK043)Ph.D.Fund Project of Chongqing Normal University(05XLB)
文摘In this study,taking the typical terracing land in Wushan County of Chongqing Municipality for example,we study the distribution of soil nutrients in the terracing land under different land use patterns in Three Gorges Reservoir Area. We conduct field survey and sampling on three different land use patterns( cash crop land,food crop land and abandoned land),and do the indoor experimental analysis of soil nutrient indicators. The results indicate that there is significant or very significant impact on soil nutrients under different land use patterns. The content of soil organic matter declines in sequence from abandoned land,food crop land to cash crop land; the content of soil N declines in sequence from cash crop land,abandoned land to food crop land; the content of soil P declines in sequence from cash crop land,food crop land to abandoned land; the content of soil K declines in sequence from abandoned land,cash crop land to food crop land. The result is in close relation to land use patterns,human cultivation activity,land disturbance and application of fertilizer.
基金jointly supported by the National Natural Science Foundation of China(41702280)the projects of the China Geology Survey(DD20221754 and DD20190333)。
文摘Extensive land use will cause many environmental problems.It is an urgent task to improve land use efficiency and optimize land use patterns.In recent years,due to the flow decrease,the Guanzhong Basin in Shaanxi Province is confronted with the problem of insufficient water resources reserve.Based on the Coupled Ground-Water and Surface-Water Flow Model(GSFLOW),this paper evaluates the response of water resources in the basin to changes in land use patterns,optimizes the land use pattern,improves the ecological and economic benefits,and the efficiency of various spatial development,providing a reference for ecological protection and high-quality development of the Yellow River Basin.The research shows that the land use pattern in the Guanzhong Basin should be further optimized.Under the condition of considering ecological and economic development,the percentage change of the optimum area of farmland,forest,grassland,water area,and urban area compared with the current land use area ratio is+2.3,+2.4,-6.1,+0.2,and+1.6,respectively.The economic and ecological value of land increases by14.1%and 3.1%,respectively,and the number of water resources can increase by 2.5%.
基金Under the auspices of the National Natural Science Foundation of China (No. 40371038)
文摘For almost three decades, China has been undergoing significant transition from a planned economy to a market economy. Fast-paced economic growth and urbanization, interacting with market-oriented reforms in land re- sources allocation, have caused profound spatial restructuring of Chinese cities. This paper examines urban expansion and land use reconfiguration in Shanghai’s central city from 1979 to 2002, with a special focus on the effect of the adoption of the land-leasing system in 1988. The empirical research, which employs GIS-based spatial analysis tech- niques to explore land use data for multiple years, indicates fundamental changes in the spatial characteristics of urban development in Shanghai after this important land policy reform.
基金supported by the Key Technologies R&D Program of China during the 11th Five-Year Planperiod (2007BAD89B03, 2007BAD17B07 and2006BAD05B01)
文摘Heavy metal accumulation and its influential factors were studied in the different land use soils, which would provide a theoretical basis for controlling the content of heavy metals in soils. To identify the effects of land use on the accumulation of heavy metals in soils, 148 soil samples were collected from four land use patterns including greenhouse field, uncovered vegetable field, maize field, and forest field in Siping area of Jilin Province, China, and Cr, Ni, Cu, As, Cd, Pb, and Zn contents of those samples were determined with ICP and ICP-Mass. The result showed that there was a rather large difference in effects of the accumulation of Cr, Ni, Cu, As, Cd, and Zn in soils under different land use patterns, except Pb. Based on the assessment which compared with background concentrations in soil, the higher accumulation of heavy metals was found in greenhouse and uncovered vegetable field, much less in maize field and forest field. The mean contents of heavy metals in soils from high to low were arranged in order of greenhouse field, uncovered vegetable field, maize field, and forest field. Cd and Cu had relatively serious accumulation in soils compared to Cr, Ni, As, and Zn. The mean content of Cd in greenhouse field was 0.467 mg kg-x,which exceeded the grade II of the Chinese Soil Quality Criterion GB15618-1995 (6.5 〈pH〈7.5) for Cd standard of 0.3 mg kg^-1, while it was 5.2 times of Cd standard in the forest fields. The mean contents ofCr, Ni, Cu, As, Pb, and Zn in soils under four land use patterns were lower than the grade II of the Chinese Soil Quality Criterion. Compared with the soil cultivated years, the agricultural chemical compounds and manures application, especially the quality and quantity of applied fertilizer was one of the main reasons for leading to different accumulation of heavy metals in soils under the studied land use patterns. The accumulation of heavy metals, such as Cr, Ni, Cu, As, Cd, and Zn in soils was significantly affected by land use patterns, among them the accumulation of heavy metals in greenhouse soils was higher than others. It is suggested that the application of chemical fertilizer, organic fertilizer, and pesticides with high contents of heavy metals should be avoided to prevent the accumulation of heavy metal and keep high quality soils for sustainable use.
文摘The terrestrial ecosystem may be either a source or a sink of CH_4 in rice paddies, depending, to a great extent, on the change of ecosystem types and land use patterns. CH_4 emission fluxes from paddy fields under 4 cultivation patterns (conventional plain culture of rice(T1), no-tillage and ridge culture of rice(T2), no-tillage and ridge culture of rice and wheat (T3), and rice-wheat rotation(T4)) were measured with the closed chamber technique in 1996 and 1998 in Chongqing, China. The results showed that differences existed in CH_4 emission from paddy fields under these land management practices. In 1996 and 1998, CH_4 emission was 71 48% and 78 82%(T2), 65 93% and 57 18%(T3), and 61 53% and 34 22%(T4) of that in T1 during the rice growing season. During the non-rice growing season, CH_4 emission from rice fields was 76 23% in T2 and 38 69% in T1 The accumulated annual CH_4 emission in T2, T3 and T4 in 1996 decreased by 33 53%, 63 30% and 65 73%, respectively, as compared with that in T1 In 1998, the accumulated annual CH_4 emission in T1, T2, T3 and T4 was 116 96 g/m^2, 68 44 g/m^2, 19 70 g/m^2 and 11 80 g/m^2, respectively. Changes in soil physical and chemical properties, in thermal and moisture conditions in the soil and in rice plant growth induced by different land use patterns were the dominant causes for the difference in CH_4 emission observed. The relative contribution of various influencing factors to CH_4 emission from paddy fields differed significantly under different land use patterns. However, the general trend was that chlorophyll content in rice leaves, air temperature and temperature at the 5 cm soil layer play a major role in CH_4 emission from paddy fields and the effects of illumination, relative humidity and water layer depth in the paddy field and CH_4 concentration in the crop canopy were relatively non-significant. Such conservative land use patterns as no-tillage and ridge culture of rice with or without rotation with wheat are thought to be beneficial to reducing CH_4 emission from paddy fields and are, therefore, recommended as a significant solution to the problems of global(climatic) change.
基金the National Natural Science Foundation of China (40471066) the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX3-SW-417).
文摘Changes in soil biological and biochemical properties under different land uses in the subtropical region of China were investigated in order to develop rational cultivation and fertilization management. A small watershed of subtropical region of China was selected for this study. Land uses covered paddy fields, vegetable farming, fruit trees, upland crops, bamboo stands, and forestry. Soil biological and biochemical properties included soil organic C and nutrient contents, mineralization of soil organic C, and soil microbial biomass and community functional diversity. Soil organic C and total N contents, microbial biomass C and N, and respiration intensity under different land uses were changed in the following order: paddy fields (and vegetable farming) 〉 bamboo stands 〉 fruit trccs (and upland). The top surface (0-15 cm) paddy fields (and vegetable farming) were 76.4 and 80.8% higher in soil organic C and total N contents than fruit trees (and upland) soils, respectively. Subsurface paddy soils (15-30 cm) were 59.8 and 67.3% higher in organic C and total N than upland soils, respectively. Soil microbial C, N and respiration intensity in paddy soils (0-15 cm) were 6.36, 3.63 and 3.20 times those in fruit tree (and upland) soils respectively. Soil microbial metabolic quotient was in the order: fruit trees (and upland) 〉 forestry 〉 paddy fields. Metabolic quotient in paddy soils was only 47.7% of that in fruit tree (and upland) soils. Rates of soil organic C mineralization during incubation changed in the order: paddy fields 〉 bamboo stands 〉 fruit trees (and upland) and soil bacteria population: paddy fields 〉 fruit trees (and upland) 〉 forestry. No significant difference was found for fungi and actinomycetes populations. BIOLOG analysis indicated a changing order of paddy fields 〉 fruit trees (and upland) 〉 forestry in values of the average well cell development (AWCD) and functional diversity indexes of microbial community. Results also showed that the conversion from paddy fields to vegetable farming for 5 years resulted in a dramatic increase in soil available phosphorus content while insignificant changes in soil organic C and total N content due to a large inputs of phosphate fertilizers. This conversion caused 53, 41.5, and 41.3% decreases in soil microbial biomass C, N, and respiration intensity, respectively, while 23.6% increase in metabolic quotient and a decrease in soil organic C mineralization rate. Moreover, soil bacteria and actinomycetes populations were increased slightly, while fungi population increased dramatically. Functional diversity indexes of soil microbial community decreased significantly. It was concluded that land uses in the subtropical region of China strongly affected soil biological and biochemical properties. Soil organic C and nutrient contents, mineralization of organic C and functional diversity of microbial community in paddy fields were higher than those in upland and forestry. Overuse of chemical fertilizers in paddy fields with high fertility might degrade soil biological properties and biochemical function, resulting in deterioration of soil biological quality.
基金supported by Project of Guizhou Special Funds for High-level Personnel (Grant Number TZJF-2011-44)Program for New Century Excellent Talents in University (NCET-12-0659)Project of Guizhou Governor Capital Fund (Guizhou province designed cooperative [2012]71)
文摘We selected four kinds of land use types from Caohai wetlands of Guizhou plateau(a total number of 32 soil profiles) to study the distribution characteristics of organic carbon content in soil. With different ways of land use, the organic carbon content of soil profiles and organic carbon density show the tendency of decreasing firstly and then increasing from top to bottom. With the increase of depth, the vertical difference becomes smaller first and then starts increasing. Land reclamation reduces the soil organic carbon content and density, changing its distribution structure in topsoil. The average content of organic carbon in Caohai wetlands are as follows: lake bed silt [ marsh wetland [ farmland [ woodland, the average organic carbon content of lake bed silt, marsh wetland,farmland and woodland are 16.40, 2.94, 1.81 and 1.08 %,respectively. Land reclamation reduces the organic carbon content of soil, therefore the conversion of cultivated lands to wetlands and the increase of forest coverage will help to fix the organic carbon in soil and increase its reserves.
基金The National Basic Research Program of China, No.2006CB400505 National Natural Science Foundation of China, No.40171007 Key Project of Ministry of Land and Resources, No.20010102
文摘Rapid land landscape change has taken place in many arid and semi-arid regions such as the vulnerable ecological area over the last decade. In this paper, we quantified land landscape change of Yulin in this area between 1985 and 2000 using remote sensing and GIS. It was found that fallow landscape decreased by 125,148 hm^2 while grassland and woodland increased by 107,975 hm^2 and 17,157 hm^2, respectively. The major factors responsible for these changes are identified as the change in the government policy on preserving the environment, continued growth in mining, and urbanization. The efforts in restoring the deteriorated ecosystem have reaped certain benefits in reducing the spatial extent of sandy land through replacement by non-irrigated farmland, woodland and grassland. On the other hand, continued expansion of mining industry and urbanization has exerted adverse impacts on the land landscape. At present regional economic development conflicts directly with the protection of the natural environment. Such a conflict has caused the destruction to the land resources and fragmentation of the landscape accompanied by land desertification, the case is even serious in some localities.
文摘The rocky desert in a karst area directly causes the lack of soil, water and forest, hence leading to the poverty there. In 1990, the villagers from the Muzhe Village in Benggu Township, Xichou County, Yunnan declared a war against rocky desert in an attempt to ask the fields for more yields. They invented a distinctive land rehabilitation and sustainable use pattern called “transforming heavenand earth” that had been practiced in Southwest China’s karst areas. The key mechanism of the pattern was to develop terraced fields with well conserved soil, water and fertility by exploding rocks in the fields, building stone walls, gathering more soil, and improving soil quality and productivity for the fields in combination with building of irrigation facilities and roads, as well as with forestation and agriculture structure adjustment. The purpose of the pattern was to alleviate poverty in the karst areas by improving soil productivity and promoting agriculturaldevelopment. A typical area was studied with the help of Participatory Rural Appraisal (PRA) and the pattern was carried out there for fifteen years, have produced excellent ecological benefits and good economic benefits. Its application in the area approved that it was a sustainable land use pattern for rocky desert areas.
基金The study was supported by the National Natural Science Foundation of China (30571094) New Century Excellent Talents in University (NCET-05-0492)the National Key Technologies R&D Program of China During the llth Five-Year Plan Period (2006BAD15B02, 2006BAD02A15).
文摘Study on the regional characteristics of soil organic carbon (SOC) density in farmland will not only contribute greatly to the technique of soil productivity enhancement, but also give evidences of technique selection and policy making for carbon sequestration in soils. Based on the second national soil survey of China, the situation of SOC density in the plow layer of farmland was analyzed under different land use patterns. Results showed that SOC density in the plow layer was about 3.15 kg m^-2 in average ranging from 0.81 to 12.68 kg m^-2. The highest density was found in the southeastern region with an average of 3.63 kg ma, while the lowest occurring in the northwestern region with an average of 3.00 kg m^-2. The variation coefficient of SOC density in the plow layer of farmland was 57%, which was 35% lower than that of non-farmland soils. Compared to SOC density in the dry land, SOC density in paddy soils was 13% higher with a lower variation coefficient between different regions. In addition, the relationships between the climatic factors (annual average temperature and precipitation) and SOC density were lower in farmland than those in non-farmland soils, as well as lower in paddy soils than those in dry land of farmland. These results suggest that anthropogenic disturbances have great impacts on SOC density in farmland soils, especially in paddy soils, indicating that Chinese rice cropping may contribute greatly to the SOC stability and sequestration in paddy field.
基金National Natural Science Foundation of China, No.40401001 No.40201003 Programme of Excellent YoungScientistsoftheM inistry ofLand and Resources
文摘Serious soil erosion is one of the major issues threatening sustainable land use in semiarid areas, especially in the Loess Plateau of China. Understanding the effects of land use on soil and water loss is important for sustainable land use strategy. Two sub-catchments: catchment A (CA) and catchment B (CB) with distinct land uses were selected to measure soil moisture, runoff and soil nutrient loss in Da Nangou catchment of the Loess Plateau of China. The effects of land use patterns on runoff and nutrient losses were analyzed based on soil moisture pattern by kriging and soil nutrients using multiple regression model. The results indicated that there were significant differences in runoff yield and soil nutrient losses between the two sub-catchments. With similar land uses, the CA produced an average sediment yield of 49 kg ha^-1 and 22.27 kg ha^-1 during two storm events. Meanwhile, there was almost no runoff in the CB with dissimilar land uses during the same events. Buffer zones should be established to re-absorb runoff and to trap sediments in catchment with similar land use structure such as the CA. Moreover, land use management strategy aiming to increase the infiltration threshold of hydrological response units could decrease the frequency of runoff occurrence on a slope and catchment scale.