期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Elucidating Dominant Factors Affecting Land Surface Hydrological Simulations of the Community Land Model over China 被引量:1
1
作者 Jianguo LIU Zong-Liang YANG +4 位作者 Binghao JIA Longhuan WANG Ping WANG Zhenghui XIE Chunxiang SHI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第2期235-250,共16页
In order to compare the impacts of the choice of land surface model(LSM)parameterization schemes,meteorological forcing,and land surface parameters on land surface hydrological simulations,and explore to what extent t... In order to compare the impacts of the choice of land surface model(LSM)parameterization schemes,meteorological forcing,and land surface parameters on land surface hydrological simulations,and explore to what extent the quality can be improved,a series of experiments with different LSMs,forcing datasets,and parameter datasets concerning soil texture and land cover were conducted.Six simulations are run for the Chinese mainland on 0.1°×0.1°grids from 1979 to 2008,and the simulated monthly soil moisture(SM),evapotranspiration(ET),and snow depth(SD)are then compared and assessed against observations.The results show that the meteorological forcing is the most important factor governing output.Beyond that,SM seems to be also very sensitive to soil texture information;SD is also very sensitive to snow parameterization scheme in the LSM.The Community Land Model version 4.5(CLM4.5),driven by newly developed observation-based regional meteorological forcing and land surface parameters(referred to as CMFD_CLM4.5_NEW),significantly improved the simulations in most cases over the Chinese mainland and its eight basins.It increased the correlation coefficient values from 0.46 to 0.54 for the SM modeling and from 0.54 to 0.67 for the SD simulations,and it decreased the root-mean-square error(RMSE)from 0.093 to 0.085 for the SM simulation and reduced the normalized RMSE from 1.277 to 0.201 for the SD simulations.This study indicates that the offline LSM simulation using a refined LSM driven by newly developed observation-based regional meteorological forcing and land surface parameters can better model reginal land surface hydrological processes. 展开更多
关键词 hydrological simulations land surface model meteorological forcing land surface parameters UNCERTAINTY
下载PDF
A Land Surface Model(IAP94) for Climate Studies PartI:Formulation and Validation in Off-line Experiments 被引量:55
2
作者 戴永久 曾庆存 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1997年第4期2-29,共23页
The IAP (Institute of Atmospheric Physics) land-surface model (IAP94) is described. This model is a comprehensive one with detailed description for the processes of vegetation, snow and soil. Particular attention has ... The IAP (Institute of Atmospheric Physics) land-surface model (IAP94) is described. This model is a comprehensive one with detailed description for the processes of vegetation, snow and soil. Particular attention has been paid to the cases with three water phases in the surface media. On the basis of the mixture theory and the theory of fluid dynamics of porous media, the system of universal conservational equations for water and heat of soil, snow and vegetation canopy has been constructed. On this background, all important factors that may affect the water and heat balance in media can be considered naturally, and each factor and term possess distinct physical meaning. In the computation of water content and temperature, the water phase change and the heat transportation by water flow are taken into account. Moreover, particular attention has been given to the water vapor diffusion in soil for arid or semi-arid cases, and snow compaction. In the treatment of surface turbulent fluxes, the difference between aerodynamic and thermal roughness is taken into account. The aerodynamic roughness of vegetation is calculated as a function of canopy density, height and zero-plane displacement. An extrapolation of log linear and exponential relationship is used when calculating the wind profile within canopy. The model has been validated against field measurements in off-line simulations. The desirable model′s performance leads to the conclusion that the IAP94 is able to reproduce the main physical mechanisms governing the energy and water balances in the global land surface. Part II of the present study will concern the validation in a 3-D experiment coupled with the IAP Two-Level AGCM. 展开更多
关键词 land surface Model Off-line Experiment VALIDATION
下载PDF
Impact of Spin-up Forcing on Vegetation States Simulated by a Dynamic Global Vegetation Model Coupled with a Land Surface Model 被引量:4
3
作者 李芳 曾晓东 +3 位作者 宋翔 田东晓 邵璞 张东凌 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第4期775-788,共14页
A dynamic global vegetation model (DGVM) coupled with a land surface model (LSM) is generally initialized using a spin-up process to derive a physically-consistent initial condition. Spin-up forcing, which is the ... A dynamic global vegetation model (DGVM) coupled with a land surface model (LSM) is generally initialized using a spin-up process to derive a physically-consistent initial condition. Spin-up forcing, which is the atmospheric forcing used to drive the coupled model to equilibrium solutions in the spin-up process, varies across earlier studies. In the present study, the impact of the spin-up forcing in the initialization stage on the fractional coverages (FCs) of plant functional type (PFT) in the subsequent simulation stage are assessed in seven classic climate regions by a modified Community Land Model’s Dynamic Global Vegetation Model (CLM-DGVM). Results show that the impact of spin-up forcing is considerable in all regions except the tropical rainforest climate region (TR) and the wet temperate climate region (WM). In the tropical monsoon climate region (TM), the TR and TM transition region (TR-TM), the dry temperate climate region (DM), the highland climate region (H), and the boreal forest climate region (BF), where FCs are affected by climate non-negligibly, the discrepancies in initial FCs, which represent long-term cumulative response of vegetation to different climate anomalies, are large. Moreover, the large discrepancies in initial FCs usually decay slowly because there are trees or shrubs in the five regions. The intrinsic growth timescales of FCs for tree PFTs and shrub PFTs are long, and the variation of FCs of tree PFTs or shrub PFTs can affect that of grass PFTs. 展开更多
关键词 VEGETATION initial condition spin-up forcing Dynamic Global Vegetation Model land surface Model
下载PDF
Effects of Crop Growth and Development on Land Surface Fluxes 被引量:4
4
作者 陈锋 谢正辉 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第4期927-944,共18页
In this study, the Crop Estimation through Resource and Environment Synthesis model (CERES3.0) was coupled into the Biosphere-Atmosphere Transfer Scheme (BATS), which is called BATS CERES, to represent interaction... In this study, the Crop Estimation through Resource and Environment Synthesis model (CERES3.0) was coupled into the Biosphere-Atmosphere Transfer Scheme (BATS), which is called BATS CERES, to represent interactions between the land surface and crop growth processes. The effects of crop growth and development on land surface processes were then studied based on numerical simulations using the land surface models. Six sensitivity experiments by BATS show that the land surface fluxes underwent substantial changes when the leaf area index was changed from 0 to 6 m2 m-2. Numerical experiments for Yucheng and Taoyuan stations reveal that the coupled model could capture not only the responses of crop growth and development to environmental conditions, but also the feedbacks to land surface processes. For quantitative evaluation of the effects of crop growth and development on surface fluxes in China, two numerical experiments were conducted over continental China: one by BATS CERES and one by the original BATS. Comparison of the two runs shows decreases of leaf area index and fractional vegetation cover when incorporating dynamic crops in land surface simulation, which lead to less canopy interception, vegetation transpiration, total evapotranspiration, top soil moisture, and more soil evaporation, surface runoff, and root zone soil moisture. These changes are accompanied by decreasing latent heat flux and increasing sensible heat flux in the cropland region. In addition, the comparison between the simulations and observations proved that incorporating the crop growth and development process into the land surface model could reduce the systematic biases of the simulated leaf area index and top soil moisture, hence improve the simulation of land surface fluxes. 展开更多
关键词 crop growth and development leaf area index land surface model land surface fluxes
下载PDF
Mapping Near-surface Air Temperature, Pressure, Relative Humidity and Wind Speed over China's Mainland with High Spatiotemporal Resolution 被引量:3
5
作者 LI Tao ZHENG Xiaogu +8 位作者 DAI Yongjiu YANG Chi CHEN Zhuoqi ZHANG Shupeng WU Guocan WANG Zhonglei HUANG Chengcheng SHEN Yan LIAO Rongwei 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第5期1127-1135,共9页
As part of a joint effort to construct an atmospheric forcing dataset for China's Mainland with high spatiotemporal reso- lution, a new approach is proposed to construct gridded near-surface temperature, relative ... As part of a joint effort to construct an atmospheric forcing dataset for China's Mainland with high spatiotemporal reso- lution, a new approach is proposed to construct gridded near-surface temperature, relative humidity, wind speed and surface pressure with a resolution of 1 km× 1 km. The approach comprises two steps: (1) fit a partial thin-plate smoothing spline with orography and reanalysis data as explanatory variables to ground-based observations for estimating a trend surface; (2) apply a simple kriging procedure to the residual for trend surface correction. The proposed approach is applied to observations collected at approximately 700 stations over China's Mainland. The generated forcing fields are compared with the corresponding components of the National Centers for Environmental Predic- tion (NCEP) Climate Forecast System Reanalysis dataset and the Princeton meteorological forcing dataset. The comparison shows that, both within the station network and within the resolutions of the two gridded datasets, the interpolation errors of the proposed approach are markedly smaller than the two gridded datasets. 展开更多
关键词 atmospheric forcing data land surface model thin-plate smoothing spline KRIGING reanalysis data
下载PDF
A New Approach for Parameter Optimization in Land Surface Model 被引量:3
6
作者 李红祺 郭维栋 +2 位作者 孙国栋 张耀存 符淙斌 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第5期1056-1066,共11页
In this study,a new parameter optimization method was used to investigate the expansion of conditional nonlinear optimal perturbation (CNOP) in a land surface model (LSM) using long-term enhanced field observation... In this study,a new parameter optimization method was used to investigate the expansion of conditional nonlinear optimal perturbation (CNOP) in a land surface model (LSM) using long-term enhanced field observations at Tongyu station in Jilin Province,China,combined with a sophisticated LSM (common land model,CoLM).Tongyu station is a reference site of the international Coordinated Energy and Water Cycle Observations Project (CEOP) that has studied semiarid regions that have undergone desertification,salination,and degradation since late 1960s.In this study,three key land-surface parameters,namely,soil color,proportion of sand or clay in soil,and leaf-area index were chosen as parameters to be optimized.Our study comprised three experiments:First,a single-parameter optimization was performed,while the second and third experiments performed triple-and six-parameter optimizations,respectively.Notable improvements in simulating sensible heat flux (SH),latent heat flux (LH),soil temperature (TS),and moisture (MS) at shallow layers were achieved using the optimized parameters.The multiple-parameter optimization experiments performed better than the single-parameter experminent.All results demonstrate that the CNOP method can be used to optimize expanded parameters in an LSM.Moreover,clear mathematical meaning,simple design structure,and rapid computability give this method great potential for further application to parameter optimization in LSMs. 展开更多
关键词 land surface model parameter optimization conditional nonlinear optimal perturbation (CNOP)
下载PDF
Improving the Vegetation Dynamic Simulation in a Land Surface Model by Using a Statistical-dynamic Canopy Interception Scheme 被引量:2
7
作者 梁妙玲 谢正辉 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第4期610-618,共9页
Canopy interception of incident precipitation, as a critical component of a forest's water budget, can affect the amount of water available to the soil, and ultimately vegetation distribution and function. In this pa... Canopy interception of incident precipitation, as a critical component of a forest's water budget, can affect the amount of water available to the soil, and ultimately vegetation distribution and function. In this paper, a statistical-dynamic approach based on leaf area index and statistical canopy interception is used to parameterize the canopy interception process. The statistical-dynamic canopy interception scheme is implemented into the Community Land Model with dynamic global vegetation model (CLM-DGVM) to improve its dynamic vegetation simulation. The simulation for continental China by the land surface model with the new canopy interception scheme shows that the new one reasonably represents the precipitation intercepted by the canopy. Moreover, the new scheme enhances the water availability in the root zone for vegetation growth, especially in the densely vegetated and semi-arid areas, and improves the model's performance of potential vegetation simulation. 展开更多
关键词 canopy interception vegetation dynamics soil water land surface model
下载PDF
An off-line simulation of land surface processes over the northern Tibetan Plateau 被引量:2
8
作者 MinHong Song YaoMing Ma +2 位作者 Yu Zhang WeiQiang Ma SiQiong Luo 《Research in Cold and Arid Regions》 CSCD 2014年第3期236-246,共11页
In order to further understand the land surface processes over the northern Tibetan Plateau, this study produced an off-line simulated examination at the Bujiao site on the northern Tibetan Plateau from June 2002 to A... In order to further understand the land surface processes over the northern Tibetan Plateau, this study produced an off-line simulated examination at the Bujiao site on the northern Tibetan Plateau from June 2002 to April 2004, using the Noah Land Surface Model (Noah LSM) and observed data from the CAMP/Tibet experiment. The observed data were neces- sarily corrected and the number of soil layers in the Noah LSM was changed from 4 to 10 to enable this off-line simulation and analysis. The main conclusions are as follows: the Noah LSM performed well on the northern Tibetan Plateau. The simulated net radiation, upward longwave radiation, and upward shortwave radiation demonstrated the same remarkable annual and seasonal variation as the observed data, especially the upward longwave radiation. The simulated soil temperatures were acceptably close to the observed temperatures, especially in the shallow soil layers. The simulated freezing and melting processes were shown to start from the surface soil layer and spread down to the deep soil layers, but they took longer than the observed processes. However, Noah LSM did not adequately simulate the soil moisture. Therefore, additional high-quality, long-term observations of land surface-atmosphere processes over the Tibetan Plateau will be a key factor in proper adiustments of the model parameters in the future. 展开更多
关键词 Noah land surface Model OFF-LINE northern Tibetan Plateau radiation flux
下载PDF
Simulation of the Asian Monsoon by IAP AGCM Coupled with an Advanced Land Surface Model(IAP94) 被引量:1
9
作者 曾庆存 戴永久 薛峰 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1998年第1期2-17,共16页
In this paper, the global and regional features of the seasonal variation of general circulation, and especially the Asian monsoon simulated by the Institute of Atmospheric Physics Two-level AGCM coupled with a sophis... In this paper, the global and regional features of the seasonal variation of general circulation, and especially the Asian monsoon simulated by the Institute of Atmospheric Physics Two-level AGCM coupled with a sophisticated land-surface model (IAP94-GCM) are presented and compared with the observation. The comparison is made by using the equilibrium multiyear seasonal cycle climate from a 100-year integration. In the integration sea surface temperature (SST) and sea ice are taken from the observed climatological data (with seasonal variation) because our purpose is to see the improvement of simulation due to the coupling with an advanced land surface model. Overall, the IAP94-GCM provides a reasonably realistic simulation of the interseasonal and intraseasonal climatology of the Asian monsoon and yields an important information that sheds light on the thermal underpinning and the thermodynamics of the seasonal and even multiscale variabilities associated with the Asian summer monsoon. 展开更多
关键词 Advanced land surface Model Coupled Model SIMULATION Asian Monsoon
下载PDF
A Land Surface Model(IAP94)for Climate Studies Part II: Implementation and Preliminary Results of Coupled Model with IAP GCM 被引量:1
10
作者 戴永久 薛峰 曾庆存 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1998年第1期48-63,共16页
The Institute of Atmospheric Physics Land Surface Model (IAP94) has been incorporated into the IAP two-level atmospheric general circulation model (IAP GCM). Global and regional climatology averaged over the last 25 y... The Institute of Atmospheric Physics Land Surface Model (IAP94) has been incorporated into the IAP two-level atmospheric general circulation model (IAP GCM). Global and regional climatology averaged over the last 25 years of 100 year integrations from the IAP GCM with and without IAP94 (“bucket” scheme) is compared. The simulated results are also compared with the reanalysis data. Major findings are: \ \ (1) The IAP GCM simulation without IAP94 has extensive regions of warmer than observed surface air temperatures, while the simulation with IAP94 very much improves the surface air temperature. \ \ (2) The IAP GCM simulation with IAP94 gives improvement of the simulated precipitation pattern and intensity, especially the precipitation of East Asian summer monsoon and its intraseasonal migration of the rainbelts. \ \ (3) In five selected typical regions, for most of the surface variables such as surface air temperature, precipitation, precipitation minus evaporation, net radiation, latent heat flux and sensible heat flux, the IAP GCM with IAP94 provides better simulations. 展开更多
关键词 land surface Model Coupled Model Simulation
下载PDF
Spatial and temporal variations of gross primary production simulated by land surface model BCC_AVIM2.0 被引量:1
11
作者 Wei-Ping LI Yan-Wu ZHANG +3 位作者 Mingquan MU Xue-Li SHI Wen-Yan ZHOU Jin-Jun JI 《Advances in Climate Change Research》 SCIE CSCD 2023年第2期286-299,共14页
Gross primary production(GPP)is the largest flux and a crucial player in the terrestrial carbon cycle and has been studied extensively,yet large uncertainties remain in the spatiotemporal patterns of GPP in both obser... Gross primary production(GPP)is the largest flux and a crucial player in the terrestrial carbon cycle and has been studied extensively,yet large uncertainties remain in the spatiotemporal patterns of GPP in both observations and simulations.This study evaluates the performance of the second version of the Beijing Climate Center Atmosphere−Vegetation Interaction Model(BCC_AVIM2.0)in simulating GPP on multiple spatial and temporal scales in the Coupled Model Intercomparison Project Phase 6(CMIP6)experiments.Model simulations driven by two meteorological datasets were compared with two observation-based GPP products covering 1982–2008.Spatial patterns of annual GPP show a significant latitudinal gradient in each dataset,increasing from cold(tundra)and dry(desert)biomes to warm(temperate)and humid(tropical rainforest)biomes.BCC_AVIM2.0 overestimates GPP in most parts of the globe,especially in boreal forest regions and Southeast China,while underestimating GPP in subhumid regions in eastern South America and tropical Africa.The four datasets broadly agree on the GPP seasonal cycle,but BCC_AVIM2.0 predicts an earlier beginning of spring growth and a larger amplitude of seasonal variations than those in the observations.The observation-based datasets exhibit slight interannual variability(IAV)and weak GPP linear trends,while the BCC_AVIM2.0 simulations demonstrate relatively large year-to-year variability and significant trends in the low-latitudes and temperate monsoon regions in North America and East Asia.Regarding the possible relationships between annual means of GPP and climate factors,BCC_AVIM2.0 predicts more extensive regions of the globe where the IAV of annual GPP is dominated by precipitation,especially in mid-to-high latitudes of the Northern Hemisphere and tropical Africa,while the observed GPP in the above regions is temperature-or radiation-dominant.The positive GPP biases due to earlier spring growth in boreal forest regions and negative GPP biases in off-equator tropical areas in the BCC_AVIM2.0 simulations imply that cold stress on biomes in boreal mid-to-high latitudes should be strengthened to restrain plant growth,while drought stress in low-latitude regions might be eased to enhance plant production in the future version of BCC_AVIM. 展开更多
关键词 Gross primary production Seasonal cycle Interannual variability TREND land surface model CMIP6
原文传递
具有Horton及Dunne机制的径流模型在VIC模型中的应用(英) 被引量:18
12
作者 谢正辉 苏凤阁 +3 位作者 曾庆存 郭裕福 梁旭 郝振纯 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第2期165-172,共8页
Surface runoff is mainly generated by two mechanisms, infiltration excess (Horton) runoff and saturation excess (Dunne) runoff; and the spatial variability of soil properties, antecedent soil moisture, topography, and... Surface runoff is mainly generated by two mechanisms, infiltration excess (Horton) runoff and saturation excess (Dunne) runoff; and the spatial variability of soil properties, antecedent soil moisture, topography, and rainfall will result in different surface runoff generation mechanisms. For a large area (e.g., a model grid size of a regional climate model or a general circulation model), these runoff generation mechanisms are commonly present at different portions of a grid cell simultaneously. Missing one of the two major runoff generation mechanisms and failing to consider spatial soil variability can result in significant under/over estimation of surface runoff which can directly introduce large errors in soil moisture states over each model grid cell. Therefore, proper modeling of surface runoff is essential to a reasonable representation of feedbacks in a land-atmosphere system. This paper presents a new surface runoff parameterization with the Philip infiltration formulation that dynamically represents both the Horton and Dunne runoff generation mechanisms within a model grid cell. The parameterization takes into account the effects of soil heterogeneity on Horton and Dunne runoff. The new parameterization is implemented into the current version of the hydrologically based Variable Infiltration Capacity (VIC) land surface model and tested over one watershed in Pennsylvania, USA and over the Shiguanhe Basin in the Huaihe Watershed in China. Results show that the new parameterization plays a very important role in partitioning the water budget between surface runoff and soil moisture in the atmosphere-land coupling system, and has potential applications on large hydrological simulations and land-atmospheric interactions. It is further found that the Horton runoff mechanism should be considered within the context of subgrid-scale spatial variability of soil properties and precipitation. 展开更多
关键词 Horton runoff Dunne runoff subgrid-scale spatial variability soil heterogeneity land surface model hydrologic model soil moisture
下载PDF
A Multimodel Ensemble-based Kalman Filter for the Retrieval of Soil Moisture Profiles 被引量:5
13
作者 张述文 李得勤 邱崇践 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第1期195-206,共12页
With the combination of three land surface models (LSMs) and the ensemble Kalman filter (EnKF), a multimodel EnKF is proposed in which the multimodel background superensemble error covariance matrix is estimated b... With the combination of three land surface models (LSMs) and the ensemble Kalman filter (EnKF), a multimodel EnKF is proposed in which the multimodel background superensemble error covariance matrix is estimated by two different algorithms: the Simple Model Average (SMA) and the Weighted Average Method (WAM). The two algorithms are tested and compared in terms of their abilities to retrieve the true soil moisture profile by respectively assimilating both synthetically-generated and actual near-surface soil moisture measurements. The results from the synthetic experiment show that the performances of the SMA and WAM algorithms were quite different. The SMA algorithm did not help to improve the estimates of soil moisture at the deep layers, although its performance was not the worst when compared with the results from the single-model EnKF. On the contrary, the results from the WAM algorithm were better than those from any single-model EnKF. The tested results from assimilating the field measurements show that the performance of the two multimodel EnKF algorithms was very stable compared with the single-model EnKF. Although comparisons could only be made at three shallow layers, on average, the performance of the WAM algorithm was still slightly better than that of the SMA algorithm. As a result, the WAM algorithm should be adopted to approximate the multimodel background superensemble error covariance and hence used to estimate soil moisture states at the relatively deep layers. 展开更多
关键词 multimodel ENKF soil moisture land data assimilation land surface model
下载PDF
一个用于气候模式的简单冻土过程参数化方案的建立和检验(英文) 被引量:4
14
作者 张 宇 吕世华 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第3期513-527,共15页
A simple frozen soil parameterization scheme is developed based on NCAR LSM and the effects of re-vised scheme are investigated using Former Soviet Union (FSU) 6 stations measurement data. In the revised model, soil i... A simple frozen soil parameterization scheme is developed based on NCAR LSM and the effects of re-vised scheme are investigated using Former Soviet Union (FSU) 6 stations measurement data. In the revised model, soil ice content and the energy change in phase change process is considered; the original soil thermal conductivity scheme is replaced by Johanson scheme and the soil thermal and hydraulic properties is modi-fied depending on soil ice content. The comparison of original model with revised model results indicates that the frozen soil scheme can reasonably simulate the energy budget in soil column and the variation of thermal and hydraulic properties as the soil ice content changes. Soil moisture in spring is decreased because of the reduction of infiltration and increment of runoff. Consequently, the partition of heat flux and surface temperature changes correspondingly. 展开更多
关键词 Frozen soil parameterization land surface model Climate model
下载PDF
Influences of agricultural phenology dynamic on land surface biophysical process and climate feedback 被引量:4
15
作者 LIU Fengshan CHEN Ying +3 位作者 SHI Wenjiao ZHANG Shuai TAO Fulu GE Quansheng 《Journal of Geographical Sciences》 SCIE CSCD 2017年第9期1085-1099,共15页
Response and feedback of land surface research priorities in the field of geoscience. The process to climate change is one of the current study paid more attention to the impacts of global change on land surface proce... Response and feedback of land surface research priorities in the field of geoscience. The process to climate change is one of the current study paid more attention to the impacts of global change on land surface process, but the feedback of land surface process to climate change has been poorly understood. It is becoming more and more meaningful under the framework of Earth system science to understand systematically the relationships between agricultural phenology dynamic and biophysical process, as well as the feedback on climate. In this paper, we summarized the research progress in this field, including the fact of agricultural phenology change, parameterization of phenology dynamic in land surface progress model, the influence of agricultural phenology dynamic on biophysical process, as well as its feedback on climate. The results showed that the agriculture phenophase, represented by the key phenological phases such as sowing, flowering and maturity, had shifted significantly due to the impacts of climate change and agronomic management. The digital expressions of land surface dynamic process, as well as the biophysical process and atmospheric process, were improved by coupling phenology dynamic in land surface model. The agricultural phenology dynamic had influenced net radiation, latent heat, sensible heat, albedo, temperature, precipitation, circulation, playing an important role in the surface energy partitioning and climate feedback. Considering the importance of agricultural phenology dynamic in land surface biophysical process and climate feedback, the following research priorities should be stressed: (1) the interactions between climate change and land surface phenology dynamic; (2) the relations between agricultural phenology dynamic and land surface reflectivity at different spectrums; (3) the contributions of crop physiology characteristic changes to land surface biophysical process; (4) the regional differences of climate feedbacks from phenology dynamic in different climate zones. This review is helpful to accelerate understanding of the role of agricultural phenology dynamic in land surface process and climate feedback. 展开更多
关键词 agricultural phenology land surface biophysical process land surface process model climate feedback
原文传递
土壤热异常影响地表能量平衡的个例分析和数值模拟(英文) 被引量:3
16
作者 郭维栋 孙菽芬 钱永甫 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第3期500-512,共13页
The statistical relationship between soil thermal anomaly and short-term climate change is presented based on a typical case study. Furthermore, possible physical mechanisms behind the relationship are re-vealed throu... The statistical relationship between soil thermal anomaly and short-term climate change is presented based on a typical case study. Furthermore, possible physical mechanisms behind the relationship are re-vealed through using an off-line land surface model with a reasonable soil thermal forcing at the bottom of the soil layer. In the first experiment, the given heat flux is 5 W m<SUP>2</SUP> at the bottom of the soil layer (in depth of 6.3 m) for 3 months, while only a positive ground temperature anomaly of 0.06°C can be found compared to the control run. The anomaly, however, could reach 0.65°C if the soil thermal conductivity was one order of magnitude larger. It could be even as large as 0.81°C assuming the heat flux at bottom is 10 W m<SUP>-2</SUP>. Mean-while, an increase of about 10 W m<SUP>&#8722;2</SUP> was detected both for heat flux in soil and sensible heat on land sur-face, which is not neglectable to the short-term climate change. The results show that considerable response in land surface energy budget could be expected when the soil thermal forcing reaches a certain spatial-tem-poral scale. Therefore, land surface models should not ignore the upward heat flux from the bottom of the soil layer. Moreover, integration for a longer period of time and coupled land-atmosphere model are also necessary for the better understanding of this issue. 展开更多
关键词 Soil thermal anomaly land surface model land surface energy budget
下载PDF
A SIMPLE LAND SURFACE PROCESS MODEL FOR USE IN CLIMATE STUDY 被引量:13
17
作者 季劲钧 胡玉春 《Acta meteorologica Sinica》 SCIE 1989年第3期342-351,共10页
A quantitative description of the processes taking place among the atmosphere, vegetation and soil is needed for studying air-land interaction and interrelation between the geosphere and the biosphere. In this paper, ... A quantitative description of the processes taking place among the atmosphere, vegetation and soil is needed for studying air-land interaction and interrelation between the geosphere and the biosphere. In this paper, a simple land surface process model is proposed. Through transfers and exchanges of heat and water, the therrnal and moisture states of the atmosphere, vegetation and soil are linked in a coupled system, in which vegetation is considered as a horizontally uniform layer, soil is divided into three layers and the horizontal differences of variables in the system are neglected. The preliminary results of the experiment indicate that the model is capable of predicting the thermal and moisture conditions of the land surface and suitable to climate study. 展开更多
关键词 A SIMPLE land surface PROCESS MODEL FOR USE IN CLIMATE STUDY
原文传递
CLM3-simulated soil moisture in East Asia and its possible response to global warming during 1979 through 2003 被引量:2
18
作者 ChuanLi Du XiaoDong Liu WanLi Wu 《Research in Cold and Arid Regions》 2009年第1期51-58,共8页
Hydrological processes related to soil moisture play an important role in determining regional and global climate. In this study, using a state-of-art Community Land Model (CLM) developed by the National Center for At... Hydrological processes related to soil moisture play an important role in determining regional and global climate. In this study, using a state-of-art Community Land Model (CLM) developed by the National Center for Atmospheric Research (NCAR), we simulated soil moisture in East Asia and its possible response to global warming through a long off-line experiment under 0.5° (longitude) × 0.5° (latitude) resolution and real atmospheric forcing of the National Center for Environmental Protection/ Department of Energy (NCEP/DOE) reanalysis during 1979 through 2003. The 25-year simulation is examined and compared with limited observations. The results can be summarized as follows: (1) Soil moisture takes time in response to the atmospheric forcing. The equilibration time depends on the depth of the soil and is as much as 20 years in deep layers (>1.5 m); (2) In comparison with observations, the CLM reasonably reproduces the seasonal and inter-annual variability, spatial structure, and vertical pattern of soil moisture in East Asia; (3) The soil tends to be drier in the past 25 years in northeastern Asia—including northern China north of 30°N—while wetter in the southern China and the Tibetan Plateau, especially in summer. Our analysis shows that the regional drying is attributed to increase of the land-surface evaporation induced by global warming. 展开更多
关键词 land surface model East Asia soil moisture global warming
下载PDF
Global Freshwater Storage Capability across Time Scales in the GRACE Satellite Era
19
作者 Enda ZHU Xing YUAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第6期905-917,共13页
Freshwater is recharged mainly by rainfall and stored inland for a period of time,which is directly affected by its storage capability.The storage capability of river basins has different spatiotemporal features that ... Freshwater is recharged mainly by rainfall and stored inland for a period of time,which is directly affected by its storage capability.The storage capability of river basins has different spatiotemporal features that are important for the predictability of freshwater resources.However,the estimation of freshwater storage capability(FSC)remains a challenge due to the lack of observations and quantification indices.Here,we use a metric that characterizes hydrological“inertia”after rainfalls to analyze FSC over the 194 largest global major river basins based on satellite observations from the Gravity Recovery and Climate Experiment(GRACE)and simulations from the Community Land Model version 5(CLM5).During 2003–16,the global land was observed to retain 28%of precipitation after one month based on GRACE observations,and the simulation depicts that the retained proportions decrease from 42%after one day to 26%after one month,with smaller FSC partly attributed to wetter conditions and higher vegetation densities.The root zone contributes about 40%to the global land FSC on daily to monthly time scales.As the time scale increases,the contribution from the surface soil decreases from 26%to 14%,while the contribution from the deep soil increases from 4%to 10%.Snow contributes over 20%of land FSC,especially over high latitudes.With six decades of CLM5 long-term simulations,it is revealed that the change of FSC in most basins is related to internal climate variability.The FSC of river basins which displays the proportion of precipitation retained on land is worthy of further attention regarding the predictability of water resources. 展开更多
关键词 FRESHWATER GRACE land surface model soil moisture climate variability storage capability
下载PDF
Effects of Topographic Slopes on Hydrological Proecsses and Climate
20
作者 Jinliang Liu Climate Processes and Earth Observation Division, Meteorological Service of Canada, 4905 Dufferin Street, Downsview, Ontario M3H 5T4, Canada Han-Ru Cho Department of Atmospheric Science, National Central University, Chungli 320, Taiwan 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第5期733-741,共9页
Based on previous research results on river re-distribution models, a modification on the effects of topographic slopes for a runoff parameterization was proposed and implemented to the NCAR's land sur- face model... Based on previous research results on river re-distribution models, a modification on the effects of topographic slopes for a runoff parameterization was proposed and implemented to the NCAR's land sur- face model (LSM). This modification has two aspects firstly, the topographic slopes cause outflows from higher topography and inflows into the lower topography points; secondly, topographic slopes also cause decrease of infiltration at higher topography and increases of infiltration at lower topography. Then changes in infiltration result in changes in soil molsture, surface fluxes and then in surface temperature, and eventual- ly in the upper atmosphere and the climate. This mechanism is very clearly demonstrated in the point bud- gets analysis at the Andes Mountains vicinities. Analysis from a regional scale perspective in the Mackenzie GEWEX Study (MAGS) area, the focus of the ongoing Canadian GEWEX program, shows that the modi- fied runoff parameterization does bring significant changes in the regional surface climate More important- ly, detailed analysis from a global perspective shows many encouraging improvements introduced by the modified LSM over the original model in simulating basic atmospheric climate properties such as thermodynamic features (temperature and humidity). All of these improvements in the atmospheric climate simulation illustrate that the inclusion of topographic effects in the LSM can force the AGCM to produce a more realistic model climate. 展开更多
关键词 Hydrological processes Runoff Parameterization Topographic slope Climate model land surface model
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部