Solar wind charge exchange produces emissions in the soft X-ray energy range which can enable the study of near-Earth space regions such as the magnetopause,the magnetosheath and the polar cusps by remote sensing tech...Solar wind charge exchange produces emissions in the soft X-ray energy range which can enable the study of near-Earth space regions such as the magnetopause,the magnetosheath and the polar cusps by remote sensing techniques.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)and Lunar Environment heliospheric X-ray Imager(LEXI)missions aim to obtain soft Xray images of near-Earth space thanks to their Soft X-ray Imager(SXI)instruments.While earlier modeling works have already simulated soft X-ray images as might be obtained by SMILE SXI during its mission,the numerical models used so far are all based on the magnetohydrodynamics description of the space plasma.To investigate the possible signatures of ion-kinetic-scale processes in soft Xray images,we use for the first time a global hybrid-Vlasov simulation of the geospace from the Vlasiator model.The simulation is driven by fast and tenuous solar wind conditions and purely southward interplanetary magnetic field.We first produce global X-ray images of the dayside near-Earth space by placing a virtual imaging satellite at two different locations,providing meridional and equatorial views.We then analyze regional features present in the images and show that they correspond to signatures in soft X-ray emissions of mirrormode wave structures in the magnetosheath and flux transfer events(FTEs)at the magnetopause.Our results suggest that,although the time scales associated with the motion of those transient phenomena will likely be significantly smaller than the integration time of the SMILE and LEXI imagers,mirror-mode structures and FTEs can cumulatively produce detectable signatures in the soft X-ray images.For instance,a local increase by 30%in the proton density at the dayside magnetopause resulting from the transit of multiple FTEs leads to a 12%enhancement in the line-of-sight-and time-integrated soft X-ray emissivity originating from this region.Likewise,a proton density increase by 14%in the magnetosheath associated with mirror-mode structures can result in an enhancement in the soft X-ray signal by 4%.These are likely conservative estimates,given that the solar wind conditions used in the Vlasiator run can be expected to generate weaker soft X-ray emissions than the more common denser solar wind.These results will contribute to the preparatory work for the SMILE and LEXI missions by providing the community with quantitative estimates of the effects of small-scale,transient phenomena occurring on the dayside.展开更多
Four comparative experiments and some supplementary experiments were conducted to examine the role of meridional wind stress anomalies and heat flux variability in ENSO simulations by using a high-resolution Ocean Gen...Four comparative experiments and some supplementary experiments were conducted to examine the role of meridional wind stress anomalies and heat flux variability in ENSO simulations by using a high-resolution Ocean General Circulation Model (OGCM). The results indicate that changes in the direction and magnitude of meridional wind stress anomalies have little influence on ENSO simulations until meridional wind stress anomalies are unrealistically enlarged by a factor of 5.0. However, evidence of an impact on ENSO simulations due to heat flux variability was found. The simulated Nino-3 index without the effect of heat flux anomalies tended to be around 1.0° lower than the observed, as well as the control run, during the peak months of ENSO events.展开更多
A comparison between simulated land surface fluxes and observed eddy covariance (EC) measurements was conducted to validate Integrated Biosphere Simulator (IBIS) at Tongyu field observation station (44°25'N...A comparison between simulated land surface fluxes and observed eddy covariance (EC) measurements was conducted to validate Integrated Biosphere Simulator (IBIS) at Tongyu field observation station (44°25'N, 122°52'E) in Jilin Province, China. Results showed that the IBIS model could reproduce net ecosystem CO2 exchange (NEE), sensible and latent heat fluxes reasonably, as indicated by correlation coefficients exceeding the significant level of 0.05. It was also evident that the NEE and sensible heat fluxes were characterized by diurnal and seasonal variation both in the grassland and the cropland ecosystems, while the latent heat fluxes correlated with evapotranspiration, only took on the diurnal variation during the growing season. Moreover, both sensible heat fluxes and the latent heat fluxes were larger in the cropland ecosystem than that in the degraded grassland ecosystem. This different characteristic was possibly correlated with vegetation growing situation in the two kinds of ecosystems. A close agreement between observation and simulation on NEE, sensible heat fluxes and latent heat flux was obtained both in the degraded grassland and the cropland ecosystems. In addition, the annual NEE in the model was overestimated by 23.21% at the grassland and 27.43% at the cropland, sensible heat flux with corresponding 9.90% and 11.98%, respectively, and the annual latent heat flux was underestimated by 4.63% and 3.48%, respectively.展开更多
An accurate critical heat flux(CHF) prediction method is the key factor for realizing the steady-state operation of a water-cooled divertor that works under one-sided high heating flux conditions.An improved CHF pre...An accurate critical heat flux(CHF) prediction method is the key factor for realizing the steady-state operation of a water-cooled divertor that works under one-sided high heating flux conditions.An improved CHF prediction method based on Euler's homogeneous model for flow boiling combined with realizable k-ε model for single-phase flow is adopted in this paper in which time relaxation coefficients are corrected by the Hertz-Knudsen formula in order to improve the calculation accuracy of vapor-liquid conversion efficiency under high heating flux conditions.Moreover,local large differences of liquid physical properties due to the extreme nonuniform heating flux on cooling wall along the circumference direction are revised by formula IAPWSIF97.Therefore,this method can improve the calculation accuracy of heat and mass transfer between liquid phase and vapor phase in a CHF prediction simulation of water-cooled divertors under the one-sided high heating condition.An experimental example is simulated based on the improved and the uncorrected methods.The simulation results,such as temperature,void fraction and heat transfer coefficient,are analyzed to achieve the CHF prediction.The results show that the maximum error of CHF based on the improved method is 23.7%,while that of CHF based on uncorrected method is up to 188%,as compared with the experiment results of Ref.[12].Finally,this method is verified by comparison with the experimental data obtained by International Thermonuclear Experimental Reactor(ITER),with a maximum error of 6% only.This method provides an efficient tool for the CHF prediction of water-cooled divertors.展开更多
The effects of the number and the location of notches on the formation of flux-closure states in bi-rings with fields applied in the x direction (i.e., along the short axis direction of hi-rings) and y direction (i...The effects of the number and the location of notches on the formation of flux-closure states in bi-rings with fields applied in the x direction (i.e., along the short axis direction of hi-rings) and y direction (i.e., along the long axis direction of bi-rings) are investigated using micromagnetic simulation. For the bi-rings with one notch and the bi-rings with two notches symmetric about y axis, the order of flux-closure state formation in each ring can be controlled. But the flux-closure state forms simultaneously in each ring for the bi-rings with two notches symmetric about x axis. For the bi-rings with two notches that are symmetric neither about x axis nor about y axis, only one ring can form a flux- closure state in the y-direction field and no fluxclosure state can be found in rings in the x-direction field. Therefore, logic states can be defined by controlling the order of flux-closure state formation, which can be utilized in future logic devices.展开更多
The entrainment flux ratio Ae and the inversion layer (IL) thickness are two key parameters in a mixed layer model. Ae is defined as the ratio of the entrainment heat flux at the mixed layer top to the surface heat ...The entrainment flux ratio Ae and the inversion layer (IL) thickness are two key parameters in a mixed layer model. Ae is defined as the ratio of the entrainment heat flux at the mixed layer top to the surface heat flux. The IL is the layer between the mixed layer and the free atmosphere. In this study, a parameterization of Ae is derived from the TKE budget in the first- order model for a well-developed CBL under the condition of linearly sheared geostrophic velocity with a zero value at the surface. It is also appropriate for a CBL under the condition of geostrophic velocity remaining constant with height. LESs are conducted under the above two conditions to determine the coefficients in the parameterization scheme. Results suggest that about 43% of the shear-produced TKE in the IL is available for entrainment, while the shear-produced TKE in the mixed layer and surface layer have little effect on entrainment. Based on this scheme, a new scale of convective turbulence velocity is proposed and applied to parameterize the IL thickness, The LES outputs for the CBLs under the condition of linearly sheared geostrophic velocity with a non-zero surface value are used to verify the performance of the parameterization scheme. It is found that the parameterized Ae and IL thickness agree well with the LES outputs.展开更多
This study uses a large eddy simulation (LES) model to investigate the turbulence processes in the ocean surface boundary layer at Zhangzi Island offshore. Field measurements at Zhangzi Island (39°N, 122°...This study uses a large eddy simulation (LES) model to investigate the turbulence processes in the ocean surface boundary layer at Zhangzi Island offshore. Field measurements at Zhangzi Island (39°N, 122°E) during July 2009 are used to drive the LES model. The LES results capture a clear diurnal cycle in the oceanic turbulence boundary layer. The process of the heat penetration and heat distribution characteristics are analyzed through the heat flux results from the LES and their differences between two diurnal cycles are discussed as well. Energy balance and other dynamics are investigated which show that the tide-induced shear production is the main source of the turbulence energy that balanced dissipation. Momentum flux near the surface shows better agreement with atmospheric data computed by the eddy correlation method than those computed by bulk formula.展开更多
The permeation of various pure gas (H2, He, Ne, CH4 and At) through carbon membranes is investigated using a dual control volume grand canonical molecular dynamics method. A two-dimensional slit pore is employed ins...The permeation of various pure gas (H2, He, Ne, CH4 and At) through carbon membranes is investigated using a dual control volume grand canonical molecular dynamics method. A two-dimensional slit pore is employed instead of the one-dimensional pore. Compared with the experiments, simulation results show that the improvement of pore model is very necessary. The effects of membrane thickness, pore width and temperature on gas permeance and ideal separation factor are also discussed. Results show that gas permeates through membrane according to Knudsen diffusion in large pore, while Knudsen diffusion is accompanied by molecular sieving in small pore. Moreover, methane is easily adsorbed on the membrane surface due to strong attractive interactions of membrane and shows higher permeance than that of Knudsen flow. In addition, it is noted that when membrane thickness is thin enough the permeance of gas does not decrease with the increase of membrane thickness due to the strong adsorption until membrane resistance becomes dominant.展开更多
A new computational mass transfer model is proposed for simulating the distillation process by solving the fluctuating mass flux u^'ic^' for the closure of turbulent mass transfer equation in order to obtain the con...A new computational mass transfer model is proposed for simulating the distillation process by solving the fluctuating mass flux u^'ic^' for the closure of turbulent mass transfer equation in order to obtain the concentration profile and the separation efficiency of distillation column. The feather of the proposed model is to abandon the conventional way of introducing the turbulent mass transfer diffusivity (dispersion coefficient) to the turbulent mass transfer equation. To verify the validity of the proposed model, a commercial scale packed column and a sieve tray column were simulated and compared with published experimental data. The simulated results were satisfactorily confirmed in both concentration distribution and senaration efficiency.展开更多
Forward osmosis(FO), as an emerging technology, is influenced by different factors such as operating conditions,module characteristics, and membrane properties. The general aim of this study was to develop a suitable(...Forward osmosis(FO), as an emerging technology, is influenced by different factors such as operating conditions,module characteristics, and membrane properties. The general aim of this study was to develop a suitable(flexible,comprehensive, and convenient to use) computational tool which is able to simulate osmosis through an asymmetric membrane oriented in pressure retarded osmosis(PRO) mode in a wide variety of scenarios. For this purpose, an agent-based model was created in NetLogo platform, which is an easy-to-use application environment with graphical visualization abilities and well suited for modeling a complex system evolving over time. The simulation results were validated with empirical data obtained from literature and a great agreement was observed. The effect of various parameters on process performance was investigated in terms of temperature,cross-flow velocity, length of the module, pure water permeability coefficient, and structural parameter of the membrane. Results demonstrated that the increase in all parameters, except structural parameter of the membrane and the length of module led to the increase of average water flux. Moreover, nine different draw solutes were selected in order to assess the influence of net bulk osmotic pressure difference between the draw solution(DS) and feed solution(FS)(known as the driving force of FO process) on water flux. Based on the findings of this paper, the performance of FO process(PRO mode) can be efficiently evaluated using the NetL ogo platform.展开更多
To study the potential effect of sea spray on the evolution of typhoons,two kinds of sea spray flux parameterization schemes developed by Andreas (2005) and Andreas and Wang (2006) and Fairall et al. (1994) respective...To study the potential effect of sea spray on the evolution of typhoons,two kinds of sea spray flux parameterization schemes developed by Andreas (2005) and Andreas and Wang (2006) and Fairall et al. (1994) respectively are incorporated into the regional atmospheric Mesoscale Model version 3.6 (MM5V3) of Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) and the coupled atmosphere-sea spray modeling system is applied to simulate a Western Pacific super ty-phoon Ewiniar in 2006. The simulation results demonstrate that sea spray can lead to a significant increase in heat fluxes at the air-sea interface and the simulated typhoon’s intensity. Compared with the results without sea spray,the minimum sea level pressure reduces about 8hPa after taking account of sea spray by Fairall et al.’s parameterization (1994) and about 5hPa by Andreas’ (2005) and Andreas and Wang’s (2006) parameterization at the end of the model integration,while the maximum 10m wind speed increases about 17% and 15% on average,respectively,through the entire simulation time period. Taking sea spray into account also causes significant changes in Tropical Cyclone (TC) structure due to an enhancement of water vapor and heat transferred from the sea sur-face to the air; therefore,the center structure of the typhoon becomes more clearly defined and the wind speed around the typhoon eye is stronger in numerical experiments. The simulations show that different sea spray flux parameterizations make different modi-fications to the TC structure.展开更多
Sand/dust storms are some of the main hazards in arid and semi-arid zones. These storms also influence global environmental changes. By field observations, empirical statistics, and numerical simulations, pioneer rese...Sand/dust storms are some of the main hazards in arid and semi-arid zones. These storms also influence global environmental changes. By field observations, empirical statistics, and numerical simulations, pioneer researchers on these natural events have concluded the existence of a positive relationship between thermodynamic effects and sand/dust storms. Thermodynamic effects induce an unsteady stratified atmosphere to influence the process of these storms. However, studies on the relationship of thermodynamic effects with particles (i.e., sand and dust) are limited. In this article, wind tunnel with heating was used to simulate the quantitative relationship between thermodynamic effects and particle movement on different surfaces. Compared with the cold state, the threshold wind velocity of particles is found to be significantly decrease under the hot state. The largest decrease percentage exceedes 9% on fine and coarse sand surfaces. The wind velocity also has a three-power function in the sand transport rate under the hot state with increased sand transport. Thermodynamic effects are stronger on loose surfaces and fine particles, but weaker on compacted surfaces and coarse particles.展开更多
The climate modeling community has been challenged to develop a method for improving the simulation of the Pacific-North America (PNA) teleconnection pattern in climate models. The accuracy of PNA teleconnection sim...The climate modeling community has been challenged to develop a method for improving the simulation of the Pacific-North America (PNA) teleconnection pattern in climate models. The accuracy of PNA teleconnection simulation is significantly improved by considering mesoscale convection contributions to sea surface fluxes. The variation in the PNA over the past 22 years was simulated by the Grid Atmospheric Model of lAP LASG version 1.0 (GAMIL1.0), which was guided by observational SST from January 1979 to December 2000. Results show that heating in the tropical central-eastern Pacific is simulated more realistically, and sea surface latent heat flux and precipitation anomalies are more similar to the reanalysis data when mesoscale enhancement is considered during the parameterization scheme of sea surface turbulent fluxes in GAMIL1.0. Realistic heating in the tropical central-eastern Pacific in turn significantly improves the simulation of interannual variation and spatial patterns of PNA.展开更多
B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the si...B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the simulation of plasma disruption process of the future fusion reactors, And a study on eroded products of B4C/Cu FGM under transient thermal load of electron beam was performed. In the experiment, SEM and EDS analysis indicated that B4C and SiC were decomposed, carbon was preferentially evaporated under high thermal load, and a part of Si and Cu were melted, in addition, the splash of melted metal and the particle emission of brittle destruction were also found. Different erosive behaviors of carbon-based materials (CBMs) caused by laser and electron beam were also discussed.展开更多
A prompt gamma neutron activation analysis system with a 252Cf neutron source for on-line cement analysis has been simulated with the MCNP code.The results indicate that the optimum arrangement is a Bi shield of 20-mm...A prompt gamma neutron activation analysis system with a 252Cf neutron source for on-line cement analysis has been simulated with the MCNP code.The results indicate that the optimum arrangement is a Bi shield of 20-mm thickness,a polyethylene moderator of 50-mm thickness,a source-to-sample distance of 70 mm,and cement samples of 1200 mm×600 mm×170 mm.To absorb thermal neutrons and suppress low-energy γ-rays,the optimum-sized sheets are 150 mm×7 mm Cd,and 150 mm×15 mm Pb.展开更多
The distribution characteristics of the neutron field in cement was simulated using the MCNP code to comply with the requirements of an online Prompt Gamma Neutron Activation Analysis system.Simulation results showed ...The distribution characteristics of the neutron field in cement was simulated using the MCNP code to comply with the requirements of an online Prompt Gamma Neutron Activation Analysis system.Simulation results showed that the neutron relative flux proportion reduced with increasing cement thickness.When the cement thickness remains unchanged,the reduced proportion of thermal neutrons increases to a small extent,but the epithermal, intermediate,and fast neutrons will decrease according to the geometric progression.H element in the cement mainly affects the reduction of fast neutrons and other single-substance elements,e.g.,O,Ca,56Fe,Si,and Al.It also slows down the reduction of the fast neutrons via inelastic scattering.O contributes more than other elements in the reduction of fast neutrons.Changing the H content affects the thermal,epithermal,intermediate,and fast neutrons, while changing the Ca,Fe,and Si contents only influences the thermal,epithermal,and intermediate neutrons;hence, there is little effect on the reduction of fast neutrons.展开更多
Thermal cracking of hydrocarbons for olefin production is normally carried out in long reactor tubes suspended in a large gas fired furnace. In this paper, a coupled furnace-reactor mathematical model based on a com...Thermal cracking of hydrocarbons for olefin production is normally carried out in long reactor tubes suspended in a large gas fired furnace. In this paper, a coupled furnace-reactor mathematical model based on a computational fluid dynamics (CFD) technique is developed to simulate the complex fluid dynamics phenomena in the thermal cracking furnace. The model includes mass transfer, momentum transfer, and heat transfer, as well as thermal cracking reactions, fuel combustion and radiative heat transfer. The rationality and reliability of the mathematical model is confirmed by the approximate agreement of predicted data and industrial data. The coupled furnace-reactor simulation revealed the details of both the transfer and reaction processes taking place in the thermal cracking furnace. The results indicate highly nonuniform distribution of the flue-gas velocity, concentration and temperature in the furnace, which cause nonuniform distribution of tube skin temperature and heat flux of the reactor tubes. Profiles of oil-gas velocity, pressure, temperature and product yields in the lengthwise direction of the reactor tube are obtained. Furthermore, in the radial direction steep velocity and temperature gradients and relatively slight gradients of species concentration are found. In conclusion, the model can provide more information on the fluid dynamics and reaction behavior in the thermal cracking furnace, and guidance for the design and improvement of thermal cracking furnaces.展开更多
Calculations have been made for weld depths occurring for TIG welding activated by a flux over the surface of the weld pool. In this case, the flux introduces an electrically insulating layer over the outer regions of...Calculations have been made for weld depths occurring for TIG welding activated by a flux over the surface of the weld pool. In this case, the flux introduces an electrically insulating layer over the outer regions of the weld pool surface. There is then an increase in the current density at the surface of the centre of the weld pool with a consequent increase in the J×B forces, which drive a strong convective flow of the molten metal downwards, tending to make a deep weld. For a flux which produces an insulating layer for all but a central region of radius 2 mm, the calculated weld depth is 7 mm, and an arc spot is predicted at the centre of the weld pool surface. As yet we have not resolved the reason for significant differences that exist between our measurements of weld depth and the theoretical predictions.展开更多
Information on the spatial and temporal patterns of surface carbon flux is crucial to understanding of source/sink mechanisms and projection of future atmospheric CO2 concentrations and climate. This study presents th...Information on the spatial and temporal patterns of surface carbon flux is crucial to understanding of source/sink mechanisms and projection of future atmospheric CO2 concentrations and climate. This study presents the construction and implementation of a terrestrial carbon cycle data assimilation system based on a dynamic vegetation and terrestrial carbon model Vegetation-Global-Atmosphere-Soil(VEGAS) with an advanced assimilation algorithm, the local ensemble transform Kalman filter(LETKF, hereafter LETKF-VEGAS). An observing system simulation experiment(OSSE) framework was designed to evaluate the reliability of this system, and numerical experiments conducted by the OSSE using leaf area index(LAI) observations suggest that the LETKF-VEGAS can improve the estimations of leaf carbon pool and LAI significantly, with reduced root mean square errors and increased correlation coefficients with true values, as compared to a control run without assimilation. Furthermore, the LETKF-VEGAS has the potential to provide more accurate estimations of the net primary productivity(NPP) and carbon flux to atmosphere(CFta).展开更多
The change in ocean net surface heat flux plays an important role in the climate system.It is closely related to the ocean heat content change and ocean heat transport,particularly over the North Atlantic,where the oc...The change in ocean net surface heat flux plays an important role in the climate system.It is closely related to the ocean heat content change and ocean heat transport,particularly over the North Atlantic,where the ocean loses heat to the atmosphere,affecting the AMOC(Atlantic Meridional Overturning Circulation)variability and hence the global climate.However,the difference between simulated surface heat fluxes is still large due to poorly represented dynamical processes involving multiscale interactions in model simulations.In order to explain the discrepancy of the surface heat flux over the North Atlantic,datasets from nineteen AMIP6 and eight highresSST-present climate model simulations are analyzed and compared with the DEEPC(Diagnosing Earth's Energy Pathways in the Climate system)product.As an indirect check of the ocean surface heat flux,the oceanic heat transport inferred from the combination of the ocean surface heat flux,sea ice,and ocean heat content tendency is compared with the RAPID(Rapid Climate Change-Meridional Overturning Circulation and Heat flux array)observations at 26°N in the Atlantic.The AMIP6 simulations show lower inferred heat transport due to less heat loss to the atmosphere.The heat loss from the AMIP6 ensemble mean north of 26°N in the Atlantic is about10 W m–2 less than DEEPC,and the heat transport is about 0.30 PW(1 PW=1015 W)lower than RAPID and DEEPC.The model horizontal resolution effect on the discrepancy is also investigated.Results show that by increasing the resolution,both surface heat flux north of 26°N and heat transport at 26°N in the Atlantic can be improved.展开更多
基金the European Research Council for starting grant 200141-QuESpace,with which the Vlasiator model was developedconsolidator grant 682068-PRESTISSIMO awarded for further development of Vlasiator and its use in scientific investigations+4 种基金Academy of Finland grant numbers 338629-AERGELC’H,339756-KIMCHI,336805-FORESAIL,and 335554-ICT-SUNVACThe Academy of Finland also supported this work through the PROFI4 grant(grant number 3189131)support from the NASA grants,80NSSC20K1670 and 80MSFC20C0019the NASA GSFC FY23 IRADHIF funds。
文摘Solar wind charge exchange produces emissions in the soft X-ray energy range which can enable the study of near-Earth space regions such as the magnetopause,the magnetosheath and the polar cusps by remote sensing techniques.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)and Lunar Environment heliospheric X-ray Imager(LEXI)missions aim to obtain soft Xray images of near-Earth space thanks to their Soft X-ray Imager(SXI)instruments.While earlier modeling works have already simulated soft X-ray images as might be obtained by SMILE SXI during its mission,the numerical models used so far are all based on the magnetohydrodynamics description of the space plasma.To investigate the possible signatures of ion-kinetic-scale processes in soft Xray images,we use for the first time a global hybrid-Vlasov simulation of the geospace from the Vlasiator model.The simulation is driven by fast and tenuous solar wind conditions and purely southward interplanetary magnetic field.We first produce global X-ray images of the dayside near-Earth space by placing a virtual imaging satellite at two different locations,providing meridional and equatorial views.We then analyze regional features present in the images and show that they correspond to signatures in soft X-ray emissions of mirrormode wave structures in the magnetosheath and flux transfer events(FTEs)at the magnetopause.Our results suggest that,although the time scales associated with the motion of those transient phenomena will likely be significantly smaller than the integration time of the SMILE and LEXI imagers,mirror-mode structures and FTEs can cumulatively produce detectable signatures in the soft X-ray images.For instance,a local increase by 30%in the proton density at the dayside magnetopause resulting from the transit of multiple FTEs leads to a 12%enhancement in the line-of-sight-and time-integrated soft X-ray emissivity originating from this region.Likewise,a proton density increase by 14%in the magnetosheath associated with mirror-mode structures can result in an enhancement in the soft X-ray signal by 4%.These are likely conservative estimates,given that the solar wind conditions used in the Vlasiator run can be expected to generate weaker soft X-ray emissions than the more common denser solar wind.These results will contribute to the preparatory work for the SMILE and LEXI missions by providing the community with quantitative estimates of the effects of small-scale,transient phenomena occurring on the dayside.
基金the National Basic Research Program of China (2005CB321703) the Chinese Academy of Sciences International Partnership Creative Group, entitled "The Climate System Model Development and Application Studies" the National Natural Science Foundation of China (Grant Nos. 40523001, 40221503).
文摘Four comparative experiments and some supplementary experiments were conducted to examine the role of meridional wind stress anomalies and heat flux variability in ENSO simulations by using a high-resolution Ocean General Circulation Model (OGCM). The results indicate that changes in the direction and magnitude of meridional wind stress anomalies have little influence on ENSO simulations until meridional wind stress anomalies are unrealistically enlarged by a factor of 5.0. However, evidence of an impact on ENSO simulations due to heat flux variability was found. The simulated Nino-3 index without the effect of heat flux anomalies tended to be around 1.0° lower than the observed, as well as the control run, during the peak months of ENSO events.
基金This paper was supported by the National Basic Research Program of China (2006CB400506).
文摘A comparison between simulated land surface fluxes and observed eddy covariance (EC) measurements was conducted to validate Integrated Biosphere Simulator (IBIS) at Tongyu field observation station (44°25'N, 122°52'E) in Jilin Province, China. Results showed that the IBIS model could reproduce net ecosystem CO2 exchange (NEE), sensible and latent heat fluxes reasonably, as indicated by correlation coefficients exceeding the significant level of 0.05. It was also evident that the NEE and sensible heat fluxes were characterized by diurnal and seasonal variation both in the grassland and the cropland ecosystems, while the latent heat fluxes correlated with evapotranspiration, only took on the diurnal variation during the growing season. Moreover, both sensible heat fluxes and the latent heat fluxes were larger in the cropland ecosystem than that in the degraded grassland ecosystem. This different characteristic was possibly correlated with vegetation growing situation in the two kinds of ecosystems. A close agreement between observation and simulation on NEE, sensible heat fluxes and latent heat flux was obtained both in the degraded grassland and the cropland ecosystems. In addition, the annual NEE in the model was overestimated by 23.21% at the grassland and 27.43% at the cropland, sensible heat flux with corresponding 9.90% and 11.98%, respectively, and the annual latent heat flux was underestimated by 4.63% and 3.48%, respectively.
基金supported by the National Magnetic Confinement Fusion Science Program of China(No.2010GB104005)National Natural Science Foundation of China(No.51406085)
文摘An accurate critical heat flux(CHF) prediction method is the key factor for realizing the steady-state operation of a water-cooled divertor that works under one-sided high heating flux conditions.An improved CHF prediction method based on Euler's homogeneous model for flow boiling combined with realizable k-ε model for single-phase flow is adopted in this paper in which time relaxation coefficients are corrected by the Hertz-Knudsen formula in order to improve the calculation accuracy of vapor-liquid conversion efficiency under high heating flux conditions.Moreover,local large differences of liquid physical properties due to the extreme nonuniform heating flux on cooling wall along the circumference direction are revised by formula IAPWSIF97.Therefore,this method can improve the calculation accuracy of heat and mass transfer between liquid phase and vapor phase in a CHF prediction simulation of water-cooled divertors under the one-sided high heating condition.An experimental example is simulated based on the improved and the uncorrected methods.The simulation results,such as temperature,void fraction and heat transfer coefficient,are analyzed to achieve the CHF prediction.The results show that the maximum error of CHF based on the improved method is 23.7%,while that of CHF based on uncorrected method is up to 188%,as compared with the experiment results of Ref.[12].Finally,this method is verified by comparison with the experimental data obtained by International Thermonuclear Experimental Reactor(ITER),with a maximum error of 6% only.This method provides an efficient tool for the CHF prediction of water-cooled divertors.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50801033)
文摘The effects of the number and the location of notches on the formation of flux-closure states in bi-rings with fields applied in the x direction (i.e., along the short axis direction of hi-rings) and y direction (i.e., along the long axis direction of bi-rings) are investigated using micromagnetic simulation. For the bi-rings with one notch and the bi-rings with two notches symmetric about y axis, the order of flux-closure state formation in each ring can be controlled. But the flux-closure state forms simultaneously in each ring for the bi-rings with two notches symmetric about x axis. For the bi-rings with two notches that are symmetric neither about x axis nor about y axis, only one ring can form a flux- closure state in the y-direction field and no fluxclosure state can be found in rings in the x-direction field. Therefore, logic states can be defined by controlling the order of flux-closure state formation, which can be utilized in future logic devices.
基金sponsored by the National Natural Science Foundation of China(Grant No.40975004)the State Key Basic Program(973)Program(Grant No.2013CB430100)
文摘The entrainment flux ratio Ae and the inversion layer (IL) thickness are two key parameters in a mixed layer model. Ae is defined as the ratio of the entrainment heat flux at the mixed layer top to the surface heat flux. The IL is the layer between the mixed layer and the free atmosphere. In this study, a parameterization of Ae is derived from the TKE budget in the first- order model for a well-developed CBL under the condition of linearly sheared geostrophic velocity with a zero value at the surface. It is also appropriate for a CBL under the condition of geostrophic velocity remaining constant with height. LESs are conducted under the above two conditions to determine the coefficients in the parameterization scheme. Results suggest that about 43% of the shear-produced TKE in the IL is available for entrainment, while the shear-produced TKE in the mixed layer and surface layer have little effect on entrainment. Based on this scheme, a new scale of convective turbulence velocity is proposed and applied to parameterize the IL thickness, The LES outputs for the CBLs under the condition of linearly sheared geostrophic velocity with a non-zero surface value are used to verify the performance of the parameterization scheme. It is found that the parameterized Ae and IL thickness agree well with the LES outputs.
基金The National Basic Research Program of China under contract Nos 201 1CB403501 and 2012CB417402the Fund for Creative Research Groups by the National Natural Science Foundation of China under contract No.41121064+1 种基金the National Natural Science Foundation of China under contract Nos 41206015 and 41176016the Open Research Foundation for the State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography,State Oceanic Administration under contract No.SOED1210
文摘This study uses a large eddy simulation (LES) model to investigate the turbulence processes in the ocean surface boundary layer at Zhangzi Island offshore. Field measurements at Zhangzi Island (39°N, 122°E) during July 2009 are used to drive the LES model. The LES results capture a clear diurnal cycle in the oceanic turbulence boundary layer. The process of the heat penetration and heat distribution characteristics are analyzed through the heat flux results from the LES and their differences between two diurnal cycles are discussed as well. Energy balance and other dynamics are investigated which show that the tide-induced shear production is the main source of the turbulence energy that balanced dissipation. Momentum flux near the surface shows better agreement with atmospheric data computed by the eddy correlation method than those computed by bulk formula.
基金Supported by the National Basic Research Program of China (No.2003CB615700), and National Natural Science Foundation ofChina (No.20376037).
文摘The permeation of various pure gas (H2, He, Ne, CH4 and At) through carbon membranes is investigated using a dual control volume grand canonical molecular dynamics method. A two-dimensional slit pore is employed instead of the one-dimensional pore. Compared with the experiments, simulation results show that the improvement of pore model is very necessary. The effects of membrane thickness, pore width and temperature on gas permeance and ideal separation factor are also discussed. Results show that gas permeates through membrane according to Knudsen diffusion in large pore, while Knudsen diffusion is accompanied by molecular sieving in small pore. Moreover, methane is easily adsorbed on the membrane surface due to strong attractive interactions of membrane and shows higher permeance than that of Knudsen flow. In addition, it is noted that when membrane thickness is thin enough the permeance of gas does not decrease with the increase of membrane thickness due to the strong adsorption until membrane resistance becomes dominant.
基金Supported by the National Natural Science Foundation of China (20736005).
文摘A new computational mass transfer model is proposed for simulating the distillation process by solving the fluctuating mass flux u^'ic^' for the closure of turbulent mass transfer equation in order to obtain the concentration profile and the separation efficiency of distillation column. The feather of the proposed model is to abandon the conventional way of introducing the turbulent mass transfer diffusivity (dispersion coefficient) to the turbulent mass transfer equation. To verify the validity of the proposed model, a commercial scale packed column and a sieve tray column were simulated and compared with published experimental data. The simulated results were satisfactorily confirmed in both concentration distribution and senaration efficiency.
文摘Forward osmosis(FO), as an emerging technology, is influenced by different factors such as operating conditions,module characteristics, and membrane properties. The general aim of this study was to develop a suitable(flexible,comprehensive, and convenient to use) computational tool which is able to simulate osmosis through an asymmetric membrane oriented in pressure retarded osmosis(PRO) mode in a wide variety of scenarios. For this purpose, an agent-based model was created in NetLogo platform, which is an easy-to-use application environment with graphical visualization abilities and well suited for modeling a complex system evolving over time. The simulation results were validated with empirical data obtained from literature and a great agreement was observed. The effect of various parameters on process performance was investigated in terms of temperature,cross-flow velocity, length of the module, pure water permeability coefficient, and structural parameter of the membrane. Results demonstrated that the increase in all parameters, except structural parameter of the membrane and the length of module led to the increase of average water flux. Moreover, nine different draw solutes were selected in order to assess the influence of net bulk osmotic pressure difference between the draw solution(DS) and feed solution(FS)(known as the driving force of FO process) on water flux. Based on the findings of this paper, the performance of FO process(PRO mode) can be efficiently evaluated using the NetL ogo platform.
基金the National Natural Science Foundation of China (No 40333025)the Open Project of Shanghai Typhoon Institute of China Meteorological Administration (No 2006STB02) in combination with the Doctoral Visit Project of Ocean University of China
文摘To study the potential effect of sea spray on the evolution of typhoons,two kinds of sea spray flux parameterization schemes developed by Andreas (2005) and Andreas and Wang (2006) and Fairall et al. (1994) respectively are incorporated into the regional atmospheric Mesoscale Model version 3.6 (MM5V3) of Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) and the coupled atmosphere-sea spray modeling system is applied to simulate a Western Pacific super ty-phoon Ewiniar in 2006. The simulation results demonstrate that sea spray can lead to a significant increase in heat fluxes at the air-sea interface and the simulated typhoon’s intensity. Compared with the results without sea spray,the minimum sea level pressure reduces about 8hPa after taking account of sea spray by Fairall et al.’s parameterization (1994) and about 5hPa by Andreas’ (2005) and Andreas and Wang’s (2006) parameterization at the end of the model integration,while the maximum 10m wind speed increases about 17% and 15% on average,respectively,through the entire simulation time period. Taking sea spray into account also causes significant changes in Tropical Cyclone (TC) structure due to an enhancement of water vapor and heat transferred from the sea sur-face to the air; therefore,the center structure of the typhoon becomes more clearly defined and the wind speed around the typhoon eye is stronger in numerical experiments. The simulations show that different sea spray flux parameterizations make different modi-fications to the TC structure.
基金Under the auspices of National Natural Science Foundation of China (No. 40930741, 41071009, 41001005)Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-329)
文摘Sand/dust storms are some of the main hazards in arid and semi-arid zones. These storms also influence global environmental changes. By field observations, empirical statistics, and numerical simulations, pioneer researchers on these natural events have concluded the existence of a positive relationship between thermodynamic effects and sand/dust storms. Thermodynamic effects induce an unsteady stratified atmosphere to influence the process of these storms. However, studies on the relationship of thermodynamic effects with particles (i.e., sand and dust) are limited. In this article, wind tunnel with heating was used to simulate the quantitative relationship between thermodynamic effects and particle movement on different surfaces. Compared with the cold state, the threshold wind velocity of particles is found to be significantly decrease under the hot state. The largest decrease percentage exceedes 9% on fine and coarse sand surfaces. The wind velocity also has a three-power function in the sand transport rate under the hot state with increased sand transport. Thermodynamic effects are stronger on loose surfaces and fine particles, but weaker on compacted surfaces and coarse particles.
基金jointly supported by the National Natural Science Foundation of China under Grants 40905045 and 40821092the Open Project for LASG-IAP-CAS+2 种基金the Study Project of Jiangsu Provincial 333 High-level Talents Cultivation Programmethe Foundation of Key Laboratory of Meteorological Disaster of Ministry of Education under Grant KLME05001the Project Funded by the Priority Academic Programme Development of Jiangsu Higher Education Institutions
文摘The climate modeling community has been challenged to develop a method for improving the simulation of the Pacific-North America (PNA) teleconnection pattern in climate models. The accuracy of PNA teleconnection simulation is significantly improved by considering mesoscale convection contributions to sea surface fluxes. The variation in the PNA over the past 22 years was simulated by the Grid Atmospheric Model of lAP LASG version 1.0 (GAMIL1.0), which was guided by observational SST from January 1979 to December 2000. Results show that heating in the tropical central-eastern Pacific is simulated more realistically, and sea surface latent heat flux and precipitation anomalies are more similar to the reanalysis data when mesoscale enhancement is considered during the parameterization scheme of sea surface turbulent fluxes in GAMIL1.0. Realistic heating in the tropical central-eastern Pacific in turn significantly improves the simulation of interannual variation and spatial patterns of PNA.
文摘B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the simulation of plasma disruption process of the future fusion reactors, And a study on eroded products of B4C/Cu FGM under transient thermal load of electron beam was performed. In the experiment, SEM and EDS analysis indicated that B4C and SiC were decomposed, carbon was preferentially evaporated under high thermal load, and a part of Si and Cu were melted, in addition, the splash of melted metal and the particle emission of brittle destruction were also found. Different erosive behaviors of carbon-based materials (CBMs) caused by laser and electron beam were also discussed.
基金Supported by NSFC(40974065)National Innovation Method(2008IM021500)+1 种基金National Key Technology R & D Program(2008BAC44B04)Province Key Technology R & D Program(2008SZ0148,2008GZ0197,2008GZ0040)
文摘A prompt gamma neutron activation analysis system with a 252Cf neutron source for on-line cement analysis has been simulated with the MCNP code.The results indicate that the optimum arrangement is a Bi shield of 20-mm thickness,a polyethylene moderator of 50-mm thickness,a source-to-sample distance of 70 mm,and cement samples of 1200 mm×600 mm×170 mm.To absorb thermal neutrons and suppress low-energy γ-rays,the optimum-sized sheets are 150 mm×7 mm Cd,and 150 mm×15 mm Pb.
基金Supported by National Natural Science Foundation for Distinguished Young Scholar(41025015)NSFC(40974065,11105132)+3 种基金Province Key Technology R&D Program(2011FZ0055)National High Technology Research and Development Program of China(2012AA063501)the Basic Research for Application of Sichuan Province(2012JY0109)China Postdoctoral Science Foundation(2012M520245)
文摘The distribution characteristics of the neutron field in cement was simulated using the MCNP code to comply with the requirements of an online Prompt Gamma Neutron Activation Analysis system.Simulation results showed that the neutron relative flux proportion reduced with increasing cement thickness.When the cement thickness remains unchanged,the reduced proportion of thermal neutrons increases to a small extent,but the epithermal, intermediate,and fast neutrons will decrease according to the geometric progression.H element in the cement mainly affects the reduction of fast neutrons and other single-substance elements,e.g.,O,Ca,56Fe,Si,and Al.It also slows down the reduction of the fast neutrons via inelastic scattering.O contributes more than other elements in the reduction of fast neutrons.Changing the H content affects the thermal,epithermal,intermediate,and fast neutrons, while changing the Ca,Fe,and Si contents only influences the thermal,epithermal,and intermediate neutrons;hence, there is little effect on the reduction of fast neutrons.
文摘Thermal cracking of hydrocarbons for olefin production is normally carried out in long reactor tubes suspended in a large gas fired furnace. In this paper, a coupled furnace-reactor mathematical model based on a computational fluid dynamics (CFD) technique is developed to simulate the complex fluid dynamics phenomena in the thermal cracking furnace. The model includes mass transfer, momentum transfer, and heat transfer, as well as thermal cracking reactions, fuel combustion and radiative heat transfer. The rationality and reliability of the mathematical model is confirmed by the approximate agreement of predicted data and industrial data. The coupled furnace-reactor simulation revealed the details of both the transfer and reaction processes taking place in the thermal cracking furnace. The results indicate highly nonuniform distribution of the flue-gas velocity, concentration and temperature in the furnace, which cause nonuniform distribution of tube skin temperature and heat flux of the reactor tubes. Profiles of oil-gas velocity, pressure, temperature and product yields in the lengthwise direction of the reactor tube are obtained. Furthermore, in the radial direction steep velocity and temperature gradients and relatively slight gradients of species concentration are found. In conclusion, the model can provide more information on the fluid dynamics and reaction behavior in the thermal cracking furnace, and guidance for the design and improvement of thermal cracking furnaces.
文摘Calculations have been made for weld depths occurring for TIG welding activated by a flux over the surface of the weld pool. In this case, the flux introduces an electrically insulating layer over the outer regions of the weld pool surface. There is then an increase in the current density at the surface of the centre of the weld pool with a consequent increase in the J×B forces, which drive a strong convective flow of the molten metal downwards, tending to make a deep weld. For a flux which produces an insulating layer for all but a central region of radius 2 mm, the calculated weld depth is 7 mm, and an arc spot is predicted at the centre of the weld pool surface. As yet we have not resolved the reason for significant differences that exist between our measurements of weld depth and the theoretical predictions.
基金supported by the National Natural Science Foundation of China (Grant No. 41305066)the Special Funds for Public Welfare of China (Grant No. GYHY201306045)the National Basic Research Program of China (Grant Nos. 2010CB951101 and 2010CB428403)
文摘Information on the spatial and temporal patterns of surface carbon flux is crucial to understanding of source/sink mechanisms and projection of future atmospheric CO2 concentrations and climate. This study presents the construction and implementation of a terrestrial carbon cycle data assimilation system based on a dynamic vegetation and terrestrial carbon model Vegetation-Global-Atmosphere-Soil(VEGAS) with an advanced assimilation algorithm, the local ensemble transform Kalman filter(LETKF, hereafter LETKF-VEGAS). An observing system simulation experiment(OSSE) framework was designed to evaluate the reliability of this system, and numerical experiments conducted by the OSSE using leaf area index(LAI) observations suggest that the LETKF-VEGAS can improve the estimations of leaf carbon pool and LAI significantly, with reduced root mean square errors and increased correlation coefficients with true values, as compared to a control run without assimilation. Furthermore, the LETKF-VEGAS has the potential to provide more accurate estimations of the net primary productivity(NPP) and carbon flux to atmosphere(CFta).
基金supported by the National Natural Science Foundation of China(Grant No.42075036)Fujian Key Laboratory of Severe Weather(Grant No.2021KFKT02)+2 种基金the scientific research start-up grant of Guangdong Ocean University(Grant No.R20001)supported by the University of Reading as a visiting fellowsupported by the UK National Centre for Earth Observation Grant No.NE/RO16518/1。
文摘The change in ocean net surface heat flux plays an important role in the climate system.It is closely related to the ocean heat content change and ocean heat transport,particularly over the North Atlantic,where the ocean loses heat to the atmosphere,affecting the AMOC(Atlantic Meridional Overturning Circulation)variability and hence the global climate.However,the difference between simulated surface heat fluxes is still large due to poorly represented dynamical processes involving multiscale interactions in model simulations.In order to explain the discrepancy of the surface heat flux over the North Atlantic,datasets from nineteen AMIP6 and eight highresSST-present climate model simulations are analyzed and compared with the DEEPC(Diagnosing Earth's Energy Pathways in the Climate system)product.As an indirect check of the ocean surface heat flux,the oceanic heat transport inferred from the combination of the ocean surface heat flux,sea ice,and ocean heat content tendency is compared with the RAPID(Rapid Climate Change-Meridional Overturning Circulation and Heat flux array)observations at 26°N in the Atlantic.The AMIP6 simulations show lower inferred heat transport due to less heat loss to the atmosphere.The heat loss from the AMIP6 ensemble mean north of 26°N in the Atlantic is about10 W m–2 less than DEEPC,and the heat transport is about 0.30 PW(1 PW=1015 W)lower than RAPID and DEEPC.The model horizontal resolution effect on the discrepancy is also investigated.Results show that by increasing the resolution,both surface heat flux north of 26°N and heat transport at 26°N in the Atlantic can be improved.