To evaluate the landing response of the large civil aircraft in the conceptual design phase , a method for simulating aircraft landing is given.The model for the shock absorber is investigated.The flexible airframe mo...To evaluate the landing response of the large civil aircraft in the conceptual design phase , a method for simulating aircraft landing is given.The model for the shock absorber is investigated.The flexible airframe model is established using finite element model ( FEM ) to analyze its modes.Then , the whole aircraft model with flexible airframe is made for the multibody simulation.Tail-down , two-point , three-point and sideslip landing scenarios are studied.The influence on the landing performance considering mode superposition of the flexible airframe is analyzed.Both longitudinal and spanwise positions of the main landing gear are changed to research the influence on the landing performance.Results show that the method is feasible.The shock absorber axial force of the main landing gear with the flexible airframe is smaller than that of rigid airframe.The number of mode superposition and the position of main landing gear can influence the landing response.展开更多
Landing dynamic simulation and landing-gear optimization design are used to improve the landing-gear design for a flexible airplane. Landing response is simulated by using velocity-squared damping, polytropic exponent...Landing dynamic simulation and landing-gear optimization design are used to improve the landing-gear design for a flexible airplane. Landing response is simulated by using velocity-squared damping, polytropic exponential air-compression spring, tire force power function characteristics, and an equivalent three-mass system.Optimization of landing-gear parameters is performed considering the maximum displacement of the landing-gear shock stroke, the maximum landing-gear force and the maximum deformation of the wingtip in the landing impact. Resutls show that landing-gear design parameters have an important influence on the structural flexibility of the airplane. And the landing performance of the landing-gear can be improved by the optimized metering pin type landing-gear.展开更多
The evolution of active stomatal closure in response to leaf water deficit, mediated by the hormone abscisic acid (ABA), has been the subject of recent debate. Two different models for the timing of the evolution of...The evolution of active stomatal closure in response to leaf water deficit, mediated by the hormone abscisic acid (ABA), has been the subject of recent debate. Two different models for the timing of the evolution of this response recur in the literature. A single-step model for stomatal control suggests that stomata evolved active, ABA- mediated control of stomatal aperture, when these structures first appeared, prior bryophyte and vascular plant gradualistic model for stomatal to the divergence of neages. In contrast, a control proposes that the most basal vascular plant stomata responded passively to changes in leaf water status. This model suggests that active ABA-driven mechanisms for stomatal responses to water status instead evolved after the divergence of seed plants, culminating in the complex, ABA-mediated responses observed in modern angiosperms. Here we review the findings that form the basis for these two models, including recent work that provides critical molecular insights into resolving this intriguing debate, and find strong evidence to support a gradualistic model for stomatal evolution.展开更多
基金Supported by the National Natural Science Foundation of China(51075203)
文摘To evaluate the landing response of the large civil aircraft in the conceptual design phase , a method for simulating aircraft landing is given.The model for the shock absorber is investigated.The flexible airframe model is established using finite element model ( FEM ) to analyze its modes.Then , the whole aircraft model with flexible airframe is made for the multibody simulation.Tail-down , two-point , three-point and sideslip landing scenarios are studied.The influence on the landing performance considering mode superposition of the flexible airframe is analyzed.Both longitudinal and spanwise positions of the main landing gear are changed to research the influence on the landing performance.Results show that the method is feasible.The shock absorber axial force of the main landing gear with the flexible airframe is smaller than that of rigid airframe.The number of mode superposition and the position of main landing gear can influence the landing response.
文摘Landing dynamic simulation and landing-gear optimization design are used to improve the landing-gear design for a flexible airplane. Landing response is simulated by using velocity-squared damping, polytropic exponential air-compression spring, tire force power function characteristics, and an equivalent three-mass system.Optimization of landing-gear parameters is performed considering the maximum displacement of the landing-gear shock stroke, the maximum landing-gear force and the maximum deformation of the wingtip in the landing impact. Resutls show that landing-gear design parameters have an important influence on the structural flexibility of the airplane. And the landing performance of the landing-gear can be improved by the optimized metering pin type landing-gear.
基金funded by the Australian Research Council grants DE140100946(SM)and DP140100666(TB)
文摘The evolution of active stomatal closure in response to leaf water deficit, mediated by the hormone abscisic acid (ABA), has been the subject of recent debate. Two different models for the timing of the evolution of this response recur in the literature. A single-step model for stomatal control suggests that stomata evolved active, ABA- mediated control of stomatal aperture, when these structures first appeared, prior bryophyte and vascular plant gradualistic model for stomatal to the divergence of neages. In contrast, a control proposes that the most basal vascular plant stomata responded passively to changes in leaf water status. This model suggests that active ABA-driven mechanisms for stomatal responses to water status instead evolved after the divergence of seed plants, culminating in the complex, ABA-mediated responses observed in modern angiosperms. Here we review the findings that form the basis for these two models, including recent work that provides critical molecular insights into resolving this intriguing debate, and find strong evidence to support a gradualistic model for stomatal evolution.