期刊文献+
共找到3,833篇文章
< 1 2 192 >
每页显示 20 50 100
An attention-based teacher-student model for multivariate short-term landslide displacement prediction incorporating weather forecast data
1
作者 CHEN Jun HU Wang +2 位作者 ZHANG Yu QIU Hongzhi WANG Renchao 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2739-2753,共15页
Predicting the displacement of landslide is of utmost practical importance as the landslide can pose serious threats to both human life and property.However,traditional methods have the limitation of random selection ... Predicting the displacement of landslide is of utmost practical importance as the landslide can pose serious threats to both human life and property.However,traditional methods have the limitation of random selection in sliding window selection and seldom incorporate weather forecast data for displacement prediction,while a single structural model cannot handle input sequences of different lengths at the same time.In order to solve these limitations,in this study,a new approach is proposed that utilizes weather forecast data and incorporates the maximum information coefficient(MIC),long short-term memory network(LSTM),and attention mechanism to establish a teacher-student coupling model with parallel structure for short-term landslide displacement prediction.Through MIC,a suitable input sequence length is selected for the LSTM model.To investigate the influence of rainfall on landslides during different seasons,a parallel teacher-student coupling model is developed that is able to learn sequential information from various time series of different lengths.The teacher model learns sequence information from rainfall intensity time series while incorporating reliable short-term weather forecast data from platforms such as China Meteorological Administration(CMA)and Reliable Prognosis(https://rp5.ru)to improve the model’s expression capability,and the student model learns sequence information from other time series.An attention module is then designed to integrate different sequence information to derive a context vector,representing seasonal temporal attention mode.Finally,the predicted displacement is obtained through a linear layer.The proposed method demonstrates superior prediction accuracies,surpassing those of the support vector machine(SVM),LSTM,recurrent neural network(RNN),temporal convolutional network(TCN),and LSTM-Attention models.It achieves a mean absolute error(MAE)of 0.072 mm,root mean square error(RMSE)of 0.096 mm,and pearson correlation coefficients(PCCS)of 0.85.Additionally,it exhibits enhanced prediction stability and interpretability,rendering it an indispensable tool for landslide disaster prevention and mitigation. 展开更多
关键词 landslide prediction MIC LSTM Attention mechanism Teacher Student model prediction stability and interpretability
下载PDF
Uncertainties in landslide susceptibility prediction:Influence rule of different levels of errors in landslide spatial position
2
作者 Faming Huang Ronghui Li +3 位作者 Filippo Catani Xiaoting Zhou Ziqiang Zeng Jinsong Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4177-4191,共15页
The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable ... The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable uncertainties in LSP modeling.To overcome this drawback,this study explores the influence of positional errors of landslide spatial position on LSP uncertainties,and then innovatively proposes a semi-supervised machine learning model to reduce the landslide spatial position error.This paper collected 16 environmental factors and 337 landslides with accurate spatial positions taking Shangyou County of China as an example.The 30e110 m error-based multilayer perceptron(MLP)and random forest(RF)models for LSP are established by randomly offsetting the original landslide by 30,50,70,90 and 110 m.The LSP uncertainties are analyzed by the LSP accuracy and distribution characteristics.Finally,a semi-supervised model is proposed to relieve the LSP uncertainties.Results show that:(1)The LSP accuracies of error-based RF/MLP models decrease with the increase of landslide position errors,and are lower than those of original data-based models;(2)70 m error-based models can still reflect the overall distribution characteristics of landslide susceptibility indices,thus original landslides with certain position errors are acceptable for LSP;(3)Semi-supervised machine learning model can efficiently reduce the landslide position errors and thus improve the LSP accuracies. 展开更多
关键词 landslide susceptibility prediction Random landslide position errors Uncertainty analysis Multi-layer perceptron Random forest Semi-supervised machine learning
下载PDF
Identification and distribution of 13003 landslides in the northwest margin of Qinghai-Tibet Plateau based on human-computer interaction remote sensing interpretation
3
作者 Wei Wang Yuan-dong Huang +8 位作者 Chong Xu Xiao-yi Shao Lei Li Li-ye Feng Hui-ran Gao Yu-long Cui Shuai Wu Zhi-qiang Yang Kai Ma 《China Geology》 CAS CSCD 2024年第2期171-187,共17页
The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remai... The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remains insufficiently explored concerning landslide occurrence and dispersion.With the planning and construction of the Xinjiang-Tibet Railway,a comprehensive investigation into disastrous landslides in this area is essential for effective disaster preparedness and mitigation strategies.By using the human-computer interaction interpretation approach,the authors established a landslide database encompassing 13003 landslides,collectively spanning an area of 3351.24 km^(2)(36°N-40°N,73°E-78°E).The database incorporates diverse topographical and environmental parameters,including regional elevation,slope angle,slope aspect,distance to faults,distance to roads,distance to rivers,annual precipitation,and stratum.The statistical characteristics of number and area of landslides,landslide number density(LND),and landslide area percentage(LAP)are analyzed.The authors found that a predominant concentration of landslide origins within high slope angle regions,with the highest incidence observed in intervals characterised by average slopes of 20°to 30°,maximum slope angle above 80°,along with orientations towards the north(N),northeast(NE),and southwest(SW).Additionally,elevations above 4.5 km,distance to rivers below 1 km,rainfall between 20-30 mm and 30-40 mm emerge as particularly susceptible to landslide development.The study area’s geological composition primarily comprises Mesozoic and Upper Paleozoic outcrops.Both fault and human engineering activities have different degrees of influence on landslide development.Furthermore,the significance of the landslide database,the relationship between landslide distribution and environmental factors,and the geometric and morphological characteristics of landslides are discussed.The landslide H/L ratios in the study area are mainly concentrated between 0.4 and 0.64.It means the landslides mobility in the region is relatively low,and the authors speculate that landslides in this region more possibly triggered by earthquakes or located in meizoseismal area. 展开更多
关键词 landslideS Human-computer interaction interpretation landslide database Spatial distribution Earthquake RAINFALL Human engineering activity Qinghai-Tibet Plateau Geological hazards survey engineering
下载PDF
Runout prediction of potential landslides based on the multi-source data collaboration analysis on historical cases
4
作者 Jun Sun Yu Zhuang Ai-guo Xing 《China Geology》 CAS CSCD 2024年第2期264-276,共13页
Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to pred... Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide. 展开更多
关键词 landslide runout prediction Drone survey Multi-source data collaboration DAN3D numerical modeling Jianshanying landslide Guizhou Province Geological hazards survey engineering
下载PDF
Particle size spatial distribution in landslide dams
5
作者 ZHANG Jingyi ZHANG Jianmin 《Journal of Mountain Science》 SCIE CSCD 2024年第6期1886-1903,共18页
The particle composition and spatial distribution of landslide-induced dam bodies are critical geotechnical parameters for studying the hazards of dam-break floods.However,current research often neglects the influence... The particle composition and spatial distribution of landslide-induced dam bodies are critical geotechnical parameters for studying the hazards of dam-break floods.However,current research often neglects the influence of the initial particle composition and spatial distribution of the landslide on the particle composition and spatial distribution of the landslide dam.This study investigated the impact of initial particle size distribution,volume,and sliding length on the energy and velocity changes of characteristic particles during the sliding process and the spatial distribution of particle sizes in the landslide dam body.Numerical simulations and physical models were employed to examine the effects of sequential gradient arrangements(where particle sizes decrease from top to bottom)and four other different initial particle arrangements on the energy and velocity changes of particles and the spatial distribution of particle sizes in the dam body.The study reveals the characteristics of translational and rotational energy of different particles and the laws of mechanical energy conversion,obtaining the spatial distribution patterns of particle sizes in landslide-induced dams.The results show that under the sequential gradient arrangement,the energy dissipation of the landslide movement is lower,with larger particles mainly distributed at the distal end and smaller particles at the proximal end of the landslide dam.In contrast,under the reverse gradient arrangement,the energy dissipation of the landslide movement is higher,and the distribution pattern of the dam particles is opposite to that of the sequential gradient arrangement.For the other arrangement modes,the spatial distribution of dam particles falls between the aforementioned two.There is a positive correlation between particle size and translational kinetic energy within the particle flow during the landslide process,and rotational motion increases energy dissipation.Under constant slope conditions,sliding length does not affect the movement pattern of the particle flow or the spatial distribution of particles in the dam body.The findings of this study provide a scientific basis for the accurate simulation and prediction of dam-break flood processes. 展开更多
关键词 Particle size distribution landslide Numerical simulation Discrete element method
下载PDF
Spatial distribution of shallow landslides caused by Typhoon Lekima in 2019 in Zhejiang Province, China
6
作者 CUI Yulong YANG Liu +1 位作者 XU Chong ZHENG Jun 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1564-1580,共17页
In recent years, the coastal region of Southeast China has witnessed a significant increase in the frequency and intensity of extreme rainfall events associated with landfalling typhoons. The hilly and mountainous ter... In recent years, the coastal region of Southeast China has witnessed a significant increase in the frequency and intensity of extreme rainfall events associated with landfalling typhoons. The hilly and mountainous terrain of this area, combined with rapid rainfall accumulation, has led to a surge in flash floods and severe geological hazards. On August 10, 2019, Typhoon Lekima made landfall in Zhejiang Province, China, and its torrential rainfall triggered extensive landslides, resulting in substantial damage and economic losses. Utilizing high-resolution satellite images, we compiled a landslide inventory of the affected area, which comprises a total of 2,774 rainfallinduced landslides over an area of 2965 km2. The majority of these landslides were small to mediumsized and exhibited elongated, clustered patterns. Some landslides displayed characteristics of high-level initiation, obstructing or partially blocking rivers, leading to the formation of debris dams. We used the inventory to analyze the distribution pattern of the landslides and their relationship with topographical, geological, and hydrological factors. The results showed that landslide abundance was closely related to elevation, slope angle, faults, and road density. The landslides were predominantly located in hilly and low mountainous areas, with elevations ranging from 150 to 300 m, slopes of 20 to 30 degrees, and a NE-SE aspect. Notably, we observed the highest Landslide Number Density(LND) and Landslide Area Percentage(LAP) in the rhyolite region. Landslides were concentrated within approximately 4 km on either side of fault zones, with their size and frequency negatively correlated with distances to faults, roads, and river systems. Furthermore, under the influence of typhoons, regions with denser vegetation cover exhibited higher landslide density, reaching maximum values in shrubland areas. In areas experiencing significantly increased concentrated rainfall, landslide density also showed a corresponding rise. In terms of spatial distribution, the rainfall-triggered landslides primarily occurred in the northeastern part of the study area, particularly in regions characterized by complex topography such as Shanzao Village in Yantan Town, Xixia Township, and Shangzhang Township. The research findings offer crucial data on the rainfallinduced landslides triggered by Typhoon Lekima, shedding light on their spatial distribution patterns. These findings provide valuable references for mitigating risks and planning reconstruction in typhoon-affected area. 展开更多
关键词 Typhoon rainfall landslide characteristics Spatial distribution Southeast coastal region
下载PDF
Spatial distribution characteristics and influence factor analysis of landslides——case study of the Hanwang area in Qinba Mountains
7
作者 Jikai Zhang Yanbo Cao +4 位作者 Wen Fan Wenbo Zheng Zequan Wang Chengcheng He Hongquan Teng 《Earthquake Research Advances》 CSCD 2024年第3期55-65,共11页
The geological hazards of landslides in Hanwang Town, Ziyang County, Ankang City, Shaanxi Province, have emerged. Yet, the current understanding of the spatial distribution characteristics and influencing factors of l... The geological hazards of landslides in Hanwang Town, Ziyang County, Ankang City, Shaanxi Province, have emerged. Yet, the current understanding of the spatial distribution characteristics and influencing factors of landslides in this area remains unclear. Combining the results of remote sensing interpretation and field investigation, seven influencing factors, namely, elevation, slope direction, slope gradient, distance from rivers, distance from faults, engineering geologic lithology, and distance from roads, are selected for the study. The distribution characteristics of landslides in each influencing factor and the influence of the resolution of the Digital Elevation Model(DEM) on the results are statistically and analytically analyzed. Furthermore, two highrisk landslides within the study area were subjected to comprehensive analysis, integrating the findings from drilling and other field investigations in order to examine their deformation mechanisms. Based on this analysis,the following conclusions were derived:(1) 34 landslides in the study area, mainly small earth landslides, with a distribution density of 0.42/km~2, threatening 414 people and property of about 55.87 million Yuan.(2)The landslides in the study area easily occur in the <400 m elevation range;the landslides are developed in all slope directions, the gradient is mainly concentrated in the range of 10°–40°, the distribution density of the landslides is higher in the closer distance from the river and the faults(0–200 m), the landslide-prone strata are mainly the softer and weaker metamorphic rocks, and the landslides are mainly around roads.(3) The resolution of the DEM should be selected based on the specific conditions of the study area, the requirements of the investigation, and the scale of the landslide. Opting for an appropriate DEM resolution is advantageous for understanding the patterns of landslides and conducting risk assessments in the region.(4) The Zhengjiabian landslide is a traction Landslide. The landslide body is a binary structure of gravel soil and slate weathering layer, and the damage process can be divided into three stages:(1)damage to the leading edge and stress release,(2)continuous creep and cracking,(3)rainfall infiltration and damage. The predominant slope material in the Brickyard landslide comprises clay, and the landslide is triggered by a combination of the traction effect resulting from the excavation at the slope's base and the nudging effect caused by the stacking load of the brick factory. Additionally, the Brickyard landslide exhibits persistent creep deformation. The study results provide a scientific basis for disaster prevention and mitigation in the Hanwang Township area. 展开更多
关键词 landslide Spatial distribution Influence factor landslide density Deformation mechanism DEM
下载PDF
Uncertainties of landslide susceptibility prediction:influences of different study area scales and mapping unit scales
8
作者 Faming Huang Yu Cao +4 位作者 Wenbin Li Filippo Catani Guquan Song Jinsong Huang Changshi Yu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期143-172,共30页
This study aims to investigate the effects of different mapping unit scales and study area scales on the uncertainty rules of landslide susceptibility prediction(LSP).To illustrate various study area scales,Ganzhou Ci... This study aims to investigate the effects of different mapping unit scales and study area scales on the uncertainty rules of landslide susceptibility prediction(LSP).To illustrate various study area scales,Ganzhou City in China,its eastern region(Ganzhou East),and Ruijin County in Ganzhou East were chosen.Different mapping unit scales are represented by grid units with spatial resolution of 30 and 60 m,as well as slope units that were extracted by multi-scale segmentation method.The 3855 landslide locations and 21 typical environmental factors in Ganzhou City are first determined to create spatial datasets with input-outputs.Then,landslide susceptibility maps(LSMs)of Ganzhou City,Ganzhou East and Ruijin County are pro-duced using a support vector machine(SVM)and random forest(RF),respectively.The LSMs of the above three regions are then extracted by mask from the LSM of Ganzhou City,along with the LSMs of Ruijin County from Ganzhou East.Additionally,LSMs of Ruijin at various mapping unit scales are generated in accordance.Accuracy and landslide suscepti-bility indexes(LSIs)distribution are used to express LSP uncertainties.The LSP uncertainties under grid units significantly decrease as study area scales decrease from Ganzhou City,Ganzhou East to Ruijin County,whereas those under slope units are less affected by study area scales.Of course,attentions should also be paid to the broader representativeness of large study areas.The LSP accuracy of slope units increases by about 6%–10%compared with those under grid units with 30 m and 60 m resolution in the same study area's scale.The significance of environmental factors exhibits an averaging trend as study area scale increases from small to large.The importance of environmental factors varies greatly with the 60 m grid unit,but it tends to be consistent to some extent in the 30 m grid unit and the slope unit. 展开更多
关键词 landslide susceptibility prediction Uncertainty analysis Study areas scales Mapping unit scales Slope units Random forest
下载PDF
Uncertainties of landslide susceptibility prediction: Influences of random errors in landslide conditioning factors and errors reduction by low pass filter method
9
作者 Faming Huang Zuokui Teng +4 位作者 Chi Yao Shui-Hua Jiang Filippo Catani Wei Chen Jinsong Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期213-230,共18页
In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken a... In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken as the model inputs,which brings uncertainties to LSP results.This study aims to reveal the influence rules of the different proportional random errors in conditioning factors on the LSP un-certainties,and further explore a method which can effectively reduce the random errors in conditioning factors.The original conditioning factors are firstly used to construct original factors-based LSP models,and then different random errors of 5%,10%,15% and 20%are added to these original factors for con-structing relevant errors-based LSP models.Secondly,low-pass filter-based LSP models are constructed by eliminating the random errors using low-pass filter method.Thirdly,the Ruijin County of China with 370 landslides and 16 conditioning factors are used as study case.Three typical machine learning models,i.e.multilayer perceptron(MLP),support vector machine(SVM)and random forest(RF),are selected as LSP models.Finally,the LSP uncertainties are discussed and results show that:(1)The low-pass filter can effectively reduce the random errors in conditioning factors to decrease the LSP uncertainties.(2)With the proportions of random errors increasing from 5%to 20%,the LSP uncertainty increases continuously.(3)The original factors-based models are feasible for LSP in the absence of more accurate conditioning factors.(4)The influence degrees of two uncertainty issues,machine learning models and different proportions of random errors,on the LSP modeling are large and basically the same.(5)The Shapley values effectively explain the internal mechanism of machine learning model predicting landslide sus-ceptibility.In conclusion,greater proportion of random errors in conditioning factors results in higher LSP uncertainty,and low-pass filter can effectively reduce these random errors. 展开更多
关键词 landslide susceptibility prediction Conditioning factor errors Low-pass filter method Machine learning models Interpretability analysis
下载PDF
Time series prediction of reservoir bank landslide failure probability considering the spatial variability of soil properties
10
作者 Luqi Wang Lin Wang +3 位作者 Wengang Zhang Xuanyu Meng Songlin Liu Chun Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期3951-3960,共10页
Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stab... Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stability of reservoir banks changes with the long-term dynamics of external disastercausing factors.Thus,assessing the time-varying reliability of reservoir landslides remains a challenge.In this paper,a machine learning(ML)based approach is proposed to analyze the long-term reliability of reservoir bank landslides in spatially variable soils through time series prediction.This study systematically investigated the prediction performances of three ML algorithms,i.e.multilayer perceptron(MLP),convolutional neural network(CNN),and long short-term memory(LSTM).Additionally,the effects of the data quantity and data ratio on the predictive power of deep learning models are considered.The results show that all three ML models can accurately depict the changes in the time-varying failure probability of reservoir landslides.The CNN model outperforms both the MLP and LSTM models in predicting the failure probability.Furthermore,selecting the right data ratio can improve the prediction accuracy of the failure probability obtained by ML models. 展开更多
关键词 Machine learning(ML) Reservoir bank landslide Spatial variability Time series prediction Failure probability
下载PDF
Data-augmented landslide displacement prediction using generative adversarial network
11
作者 Qi Ge Jin Li +2 位作者 Suzanne Lacasse Hongyue Sun Zhongqiang Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4017-4033,共17页
Landslides are destructive natural disasters that cause catastrophic damage and loss of life worldwide.Accurately predicting landslide displacement enables effective early warning and risk management.However,the limit... Landslides are destructive natural disasters that cause catastrophic damage and loss of life worldwide.Accurately predicting landslide displacement enables effective early warning and risk management.However,the limited availability of on-site measurement data has been a substantial obstacle in developing data-driven models,such as state-of-the-art machine learning(ML)models.To address these challenges,this study proposes a data augmentation framework that uses generative adversarial networks(GANs),a recent advance in generative artificial intelligence(AI),to improve the accuracy of landslide displacement prediction.The framework provides effective data augmentation to enhance limited datasets.A recurrent GAN model,RGAN-LS,is proposed,specifically designed to generate realistic synthetic multivariate time series that mimics the characteristics of real landslide on-site measurement data.A customized moment-matching loss is incorporated in addition to the adversarial loss in GAN during the training of RGAN-LS to capture the temporal dynamics and correlations in real time series data.Then,the synthetic data generated by RGAN-LS is used to enhance the training of long short-term memory(LSTM)networks and particle swarm optimization-support vector machine(PSO-SVM)models for landslide displacement prediction tasks.Results on two landslides in the Three Gorges Reservoir(TGR)region show a significant improvement in LSTM model prediction performance when trained on augmented data.For instance,in the case of the Baishuihe landslide,the average root mean square error(RMSE)increases by 16.11%,and the mean absolute error(MAE)by 17.59%.More importantly,the model’s responsiveness during mutational stages is enhanced for early warning purposes.However,the results have shown that the static PSO-SVM model only sees marginal gains compared to recurrent models such as LSTM.Further analysis indicates that an optimal synthetic-to-real data ratio(50%on the illustration cases)maximizes the improvements.This also demonstrates the robustness and effectiveness of supplementing training data for dynamic models to obtain better results.By using the powerful generative AI approach,RGAN-LS can generate high-fidelity synthetic landslide data.This is critical for improving the performance of advanced ML models in predicting landslide displacement,particularly when there are limited training data.Additionally,this approach has the potential to expand the use of generative AI in geohazard risk management and other research areas. 展开更多
关键词 Machine learning(ML) Time series Generative adversarial network(GAN) Three Gorges reservoir(TGR) landslide displacement prediction
下载PDF
A Wind Power Prediction Framework for Distributed Power Grids
12
作者 Bin Chen Ziyang Li +2 位作者 Shipeng Li Qingzhou Zhao Xingdou Liu 《Energy Engineering》 EI 2024年第5期1291-1307,共17页
To reduce carbon emissions,clean energy is being integrated into the power system.Wind power is connected to the grid in a distributed form,but its high variability poses a challenge to grid stability.This article com... To reduce carbon emissions,clean energy is being integrated into the power system.Wind power is connected to the grid in a distributed form,but its high variability poses a challenge to grid stability.This article combines wind turbine monitoring data with numerical weather prediction(NWP)data to create a suitable wind power prediction framework for distributed grids.First,high-precision NWP of the turbine range is achieved using weather research and forecasting models(WRF),and Kriging interpolation locates predicted meteorological data at the turbine site.Then,a preliminary predicted power series is obtained based on the fan’s wind speed-power conversion curve,and historical power is reconstructed using variational mode decomposition(VMD)filtering to form input variables in chronological order.Finally,input variables of a single turbine enter the temporal convolutional network(TCN)to complete initial feature extraction,and then integrate the outputs of all TCN layers using Long Short Term Memory Networks(LSTM)to obtain power prediction sequences for all turbine positions.The proposed method was tested on a wind farm connected to a distributed power grid,and the results showed it to be superior to existing typical methods. 展开更多
关键词 Wind power prediction distributed power grid WRF mode deep learning variational mode decomposition
下载PDF
Enhancing predictive accuracy in hypertriglyceridemia-induced acute pancreatitis:Role of red cell distribution width and prospective studies
13
作者 Shi-Yan Zhang 《World Journal of Clinical Cases》 SCIE 2024年第20期4452-4454,共3页
This letter addresses the study titled“Red cell distribution width:A predictor of the severity of hypertriglyceridemia-induced acute pancreatitis”by Lv et al published in the World Journal of Experimental Medicine.T... This letter addresses the study titled“Red cell distribution width:A predictor of the severity of hypertriglyceridemia-induced acute pancreatitis”by Lv et al published in the World Journal of Experimental Medicine.The study offers a valuable analysis of red cell distribution width(RDW)as a predictive marker for persistent organ failure in patients with hypertriglyceridemia-induced acute pancreatitis.The study results suggest that RDW,combined with the Bedside Index for Severity in Acute Pancreatitis score,could enhance the predictive accuracy for severe outcomes.Further investigation into the role of RDW in different severities of acute pancreatitis is recommended.Additionally,the need for large-scale and multicenter prospective studies to validate these findings is emphasized. 展开更多
关键词 Red cell distribution width Hypertriglyceridemia-induced acute pancreatitis Persistent organ failure predictive marker Letter to the Editor COMMENTARY
下载PDF
Landslide displacement prediction based on the ICEEMDAN,ApEn and the CNN-LSTM models 被引量:3
14
作者 LI Li-min WANG Chao-yang +2 位作者 WEN Zong-zhou GAO Jian XIA Meng-fan 《Journal of Mountain Science》 SCIE CSCD 2023年第5期1220-1231,共12页
Landslide deformation is affected by its geological conditions and many environmental factors.So it has the characteristics of dynamic,nonlinear and unstable,which makes the prediction of landslide displacement diffic... Landslide deformation is affected by its geological conditions and many environmental factors.So it has the characteristics of dynamic,nonlinear and unstable,which makes the prediction of landslide displacement difficult.In view of the above problems,this paper proposes a dynamic prediction model of landslide displacement based on the improvement of complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN),approximate entropy(ApEn)and convolution long short-term memory(CNN-LSTM)neural network.Firstly,ICEEMDAN and Ap En are used to decompose the cumulative displacements into trend,periodic and random displacements.Then,the least square quintic polynomial function is used to fit the displacement of trend term,and the CNN-LSTM is used to predict the displacement of periodic term and random term.Finally,the displacement prediction results of trend term,periodic term and random term are superimposed to obtain the cumulative displacement prediction value.The proposed model has been verified in Bazimen landslide in the Three Gorges Reservoir area of China.The experimental results show that the model proposed in this paper can more effectively predict the displacement changes of landslides.As compared with long short-term memory(LSTM)neural network,gated recurrent unit(GRU)network model and back propagation(BP)neural network,CNN-LSTM neural network had higher prediction accuracy in predicting the periodic displacement,with the mean absolute percentage error(MAPE)reduced by 3.621%,6.893% and 15.886% respectively,and the root mean square error(RMSE)reduced by 3.834 mm,3.945 mm and 7.422mm respectively.Conclusively,this model not only has high prediction accuracy but also is more stable,which can provide a new insight for practical landslide prevention and control engineering. 展开更多
关键词 Displacement prediction ICEENDAN Approximate entropy Long short-term memory Bazimen landslide
下载PDF
Spatial distribution and failure mechanism of water-induced landslides in the reservoir areas of Southwest China 被引量:3
15
作者 Mingliang Chen Xingguo Yang Jiawen Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第2期442-456,共15页
Water-induced landslides in hydropower reservoirs pose a great threat to both project operation and human life.This paper examines three large reservoirs in Sichuan Province,China.Field surveys,site monitoring data an... Water-induced landslides in hydropower reservoirs pose a great threat to both project operation and human life.This paper examines three large reservoirs in Sichuan Province,China.Field surveys,site monitoring data analyses and numerical simulations are used to analyze the spatial distribution and failure mechanisms of water-induced landslides in reservoir areas.First,the general rules of landslide development in the reservoir area are summarized.The first rule is that most of the landslides have rear edge elevations of 100e500 m above the normal water level of the reservoir,with volumes in the range of 106 e107 m 3.When the volume exceeds a certain amount,the number of sites at which the landscape can withstand landslides is greatly reduced.Landslide hazards mainly occur in the middle section of the reservoir and less in the annex of the dam site and the latter half of the reservoir area.The second rule is that sedimentary rocks such as sandstone are more prone to landslide hazards than other lithologies.Then,the failure mechanism of changes in the water level that reduces the stability of the slope composed of different geomaterials is analyzed by a proposed slope stability framework that considers displacement and is discussed with the monitoring results.Permeability is an essential parameter for understanding the diametrically opposed deformation behavior of landslides experiencing filling-drawdown cycles during operation.This study seeks to provide inspiration to subsequent researchers,as well as guidance to technicians,on landslide prevention and control in reservoir areas. 展开更多
关键词 Water-induced landslide Hydropower reservoir Spatial distribution Fundamental control Failure mechanism
下载PDF
Landslide susceptibility prediction using slope unit-based machine learning models considering the heterogeneity of conditioning factors 被引量:6
16
作者 Zhilu Chang Filippo Catani +4 位作者 Faming Huang Gengzhe Liu Sansar Raj Meena Jinsong Huang Chuangbing Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1127-1143,共17页
To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method propose... To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method proposed by the authors promotes the application of slope units.However,LSP modeling based on these slope units has not been performed.Moreover,the heterogeneity of conditioning factors in slope units is neglected,leading to incomplete input variables of LSP modeling.In this study,the slope units extracted by the MSS method are used to construct LSP modeling,and the heterogeneity of conditioning factors is represented by the internal variations of conditioning factors within slope unit using the descriptive statistics features of mean,standard deviation and range.Thus,slope units-based machine learning models considering internal variations of conditioning factors(variant slope-machine learning)are proposed.The Chongyi County is selected as the case study and is divided into 53,055 slope units.Fifteen original slope unit-based conditioning factors are expanded to 38 slope unit-based conditioning factors through considering their internal variations.Random forest(RF)and multi-layer perceptron(MLP)machine learning models are used to construct variant Slope-RF and Slope-MLP models.Meanwhile,the Slope-RF and Slope-MLP models without considering the internal variations of conditioning factors,and conventional grid units-based machine learning(Grid-RF and MLP)models are built for comparisons through the LSP performance assessments.Results show that the variant Slopemachine learning models have higher LSP performances than Slope-machine learning models;LSP results of variant Slope-machine learning models have stronger directivity and practical application than Grid-machine learning models.It is concluded that slope units extracted by MSS method can be appropriate for LSP modeling,and the heterogeneity of conditioning factors within slope units can more comprehensively reflect the relationships between conditioning factors and landslides.The research results have important reference significance for land use and landslide prevention. 展开更多
关键词 landslide susceptibility prediction(LSP) Slope unit Multi-scale segmentation method(MSS) Heterogeneity of conditioning factors Machine learning models
下载PDF
Distribution patterns of landslides triggered by the 2022 Ms 6.8 Luding earthquake,Sichuan,China 被引量:1
17
作者 ZHANG Jian-qiang YANG Zong-ji +19 位作者 MENG Qing-kai WANG Jiao HU Kai-heng GE Yong-gang SU Feng-huan ZHAO Bo ZHANG Bo JIANG Ning HUANG Yu MING Zai-yang ZHANG Yi-fan LIU Zhen-xing WU Chun-hao ZHOU Wen-tao LIANG Xin-yue SUN Yu-qing YANG Lian-bing YAO Hong-kun FENG Pei-hua LIU Jia-li 《Journal of Mountain Science》 SCIE CSCD 2023年第3期607-623,共17页
At 12:52 pm on September 5,2022,an Ms 6.8 earthquake occurred in Luding County,Sichuan Province,China.Based on high-resolution aerial photographs and satellite imageries obtained after the earthquake,as well as field ... At 12:52 pm on September 5,2022,an Ms 6.8 earthquake occurred in Luding County,Sichuan Province,China.Based on high-resolution aerial photographs and satellite imageries obtained after the earthquake,as well as field investigation,a total of 8685 earthquake-triggered landslides(EQTLs)were interpreted.The landslides covered an area of 30.7km^(2),with a source area of 9.4 km^(2).These EQTLs were mainly distributed in areas with a seismic intensity of VIII and IX.Most of the landslides were small and medium in size,and their types included landslide,rockfall,and rock slump.Characteristic landslide distributions were found,EQTLs were distributed along the Xianshuihe fault,landslide area decreased gradually with an increased distance to the fault;EQTLs were distributed along the Daduhe River and roads;besides,landslide distribution was associated with ground deformation caused by the earthquake.EQTLs’characteristics indicated that,a large number of EQTLs were located near the foot of the slope;the full area of EQTLs and their source area followed a power function.This study concluded that Luding EQTLs were greater in number and area but relatively smaller in terms of affected area.Investigations on geo-hazards post-earthquake and risk assessment were proposed in the earthquake-stricken area to support the rehabilitation and reconstruction. 展开更多
关键词 2022 Luding earthquake Earthquaketriggered landslide landslide inventory distribution patterns
下载PDF
Prediction of the instability probability for rainfall induced landslides:the effect of morphological differences in geomorphology within mapping units 被引量:1
18
作者 WANG Kai ZHANG Shao-jie +1 位作者 XIE Wan-li GUAN Hui 《Journal of Mountain Science》 SCIE CSCD 2023年第5期1249-1265,共17页
Slope units is an effective mapping unit for rainfall landslides prediction at regional scale.At present,slope units extracted by hydrology and morphological method report very different morphological feature and boun... Slope units is an effective mapping unit for rainfall landslides prediction at regional scale.At present,slope units extracted by hydrology and morphological method report very different morphological feature and boundaries.In order to investigate the effect of morphological difference on the prediction performance,this paper presents a general landslide probability analysis model for slope units.Monte Carlo method was used to describe the spatial uncertainties of soil mechanical parameters within slope units,and random search technique was performed to obtain the minimum safety factor;transient hydrological processes simulation was used to provide key hydrological parameters required by the model,thereby achieving landslide prediction driven by quantitative precipitation estimation and forecasting data.The prediction performance of conventional slope units(CSUs)and homogeneous slope units(HSUs)were analyzed in three case studies from Fengjie County,China.The results indicate that the mean missing alarm rate of CSUs and HSUs are 31.4% and 10.6%,respectively.Receiver Operating Characteristics(ROC)analysis also reveals that HSUs is capable of improving the overall prediction performance,and may be used further for rainfall-induced landslide prediction at regional scale. 展开更多
关键词 Slope unit Boundaries Slope gradient landslide prediction
下载PDF
Spatiotemporal distribution of regional landslides and erosion rates in Southeastern Tibet 被引量:1
19
作者 WANG Xue-liang SUN Juan-juan +4 位作者 WANG Shan-shan QI Sheng-wen ZHAO Hai-jun GUO Song-feng WANG Xin-hui 《Journal of Mountain Science》 SCIE CSCD 2023年第6期1650-1659,共10页
The difficulty in estimating ages of regional landslides hampers to assess frequency of landslides and hence to quantitatively assess regional landslide hazard.In this study,we used radiocarbon dating of organic sedim... The difficulty in estimating ages of regional landslides hampers to assess frequency of landslides and hence to quantitatively assess regional landslide hazard.In this study,we used radiocarbon dating of organic sediment on boulder rock varnish to estimate landslide ages in Langxian(LX)arid region in southeastern Tibet.Samples of rock varnish with organic sediment were collected on site for radiocarbon dating,leading to landslide ages from 1880±30 to 18,430±30 yr B.P.To measure surface roughness characteristics of 109 remotely-mapped large bedrock landslide deposits,we estimated average standard deviation of slope(SDS)over an area of~640 km^(2) by calculating the slope gradient of each raster cell and using a rectangular moving window method in Arc Map from a 5 m-resolution Digital Elevation Model generated from helicopterobtained photographs.Combing estimated landslide ages(t)with average surface roughness of mapped landslide deposits(R)quantified by SDS,we fit an exponential landslide deposits surface roughness-age function(t=1.47×10^(6)×e^(-1).46R,r2=0.63)that was used to estimate regional landslide ages in LX.We conclude that three periods with clusters of regional landslides in LX were revealed by different surface roughness of landslide deposits combing roughness-age function,with the values of 5563-7455 yr B.P.,1724-4151 yr B.P.,and 960-1287 yr B.P..Furthermore,we used our estimates of landslide ages to quantify landslide erosion rates of three corresponding hillslopes in LX ranging from 0.50 to 2.42 mm yr-1.Although rock varnish radiocarbon dating provides us a feasible option for timing regional landslides of arid regions,the epistemic uncertainty in the dating method should arouse our attention,which could be reduced by increasing the number of samples. 展开更多
关键词 landslide Spatiotemporal distribution Radiocarbon dating Rock varnish Southeastern Tibet
下载PDF
Rapid prediction models for 3D geometry of landslide dam considering the damming process 被引量:1
20
作者 WU Hao NIAN Ting-kai +3 位作者 SHAN Zhi-gang LI Dong-yang GUO Xing-sen JIANG Xian-gang 《Journal of Mountain Science》 SCIE CSCD 2023年第4期928-942,共15页
The geometry of a landslide dam plays a critical role in its stability and failure mode,and is influenced by the damming process.However,there is a lack of understanding of the factors that affect the 3D geometry of a... The geometry of a landslide dam plays a critical role in its stability and failure mode,and is influenced by the damming process.However,there is a lack of understanding of the factors that affect the 3D geometry of a landslide dam.To address this gap,we conducted a study using the smoothed particle hydrodynamics numerical method to investigate the evolution of landslide dams.Our study included 17 numerical simulations to examine the effects of several factors on the geometry of landslide dams,including valley inclination,sliding angle,landslide velocity,and landslide mass repose angle.Based on this,three rapid prediction models were established for calculating the maximum height,the minimum height,and the maximum width of a landslide dam.The results show that the downstream width of a landslide dam remarkably increases with the valley inclination.The position of the maximum dam height along the valley direction is independent of external factors and is always located in the middle of the landslide width area.In contrast,that position of the maximum dam height across the valley direction is significantly influenced by the sliding angle and landslide velocity.To validate our models,we applied them to three typical landslide dams and found that the calculated values of the landslide dam geometry were in good agreement with the actual values.The findings of the current study provide a better understanding of the evolution and geometry of landslide dams,giving crucial guidance for the prediction and early warning of landslide dam disasters. 展开更多
关键词 landslide dam Runout distance SPH numerical simulations Rapid prediction models
下载PDF
上一页 1 2 192 下一页 到第
使用帮助 返回顶部