期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Language Adaptation for Entity Relation Classification via Adversarial Neural Networks
1
作者 Bo-Wei Zou Rong-Tao Huang +2 位作者 Zeng-Zhuang Xu Yu Hong Guo-Dong Zhou 《Journal of Computer Science & Technology》 SCIE EI CSCD 2021年第1期207-220,共14页
Entity relation classification aims to classify the semantic relationship between two marked entities in a given sentence,and plays a vital role in various natural language processing applications.However,existing stu... Entity relation classification aims to classify the semantic relationship between two marked entities in a given sentence,and plays a vital role in various natural language processing applications.However,existing studies focus on exploiting mono-lingual data in English,due to the lack of labeled data in other languages.How to effectively benefit from a richly-labeled language to help a poorly-labeled language is still an open problem.In this paper,we come up with a language adaptation framework for cross-lingual entity relation classification.The basic idea is to employ adversarial neural networks(AdvNN)to transfer feature representations from one language to another.Especially,such a language adaptation framework enables feature imitation via the competition between a sentence encoder and a rival language discriminator to generate effective representations.To verify the effectiveness of AdvNN,we introduce two kinds of adversarial structures,dual-channel AdvNN and single-channel AdvNN.Experimental results on the ACE 2005 multilingual training corpus show that our single-channel AdvNN achieves the best performance on both unsupervised and semi-supervised scenarios,yielding an improvement of 6.61%and 2.98%over the state-of-the-art,respectively.Compared with baselines which directly adopt a machine translation module,we find that both dual-channel and single-channel AdvNN significantly improve the performances(F1)of cross-lingual entity relation classification.Moreover,extensive analysis and discussion demonstrate the appropriateness and effectiveness of different parameter settings in our language adaptation framework. 展开更多
关键词 adversarial neural network entity relation classification language adaptation
原文传递
A Novel Similarity Measure to Induce Semantic Classes and Its Application for Language Model Adaptation in a Dialogue System
2
作者 李亚丽 徐为群 颜永红 《Journal of Computer Science & Technology》 SCIE EI CSCD 2012年第2期443-450,共8页
In this paper,we propose a novel co-occurrence probabilities based similarity measure for inducing semantic classes.Clustering with the new similarity measure outperforms the widely used distance based on Kullback-Lei... In this paper,we propose a novel co-occurrence probabilities based similarity measure for inducing semantic classes.Clustering with the new similarity measure outperforms the widely used distance based on Kullback-Leibler divergence in precision,recall and F1 evaluation.In our experiments,we induced semantic classes from unannotated in-domain corpus and then used the induced classes and structures to generate large in-domain corpus which was then used for language model adaptation.Character recognition rate was improved from 85.2% to 91%.We imply a new measure to solve the lack of domain data problem by first induction then generation for a dialogue system. 展开更多
关键词 semantic class induction lack of domain data language model adaptation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部