A rapid and concentration-dependent generation of superoxide anion (·O2^-), measured with a superoxide-specific Cypridina luciferin-derived chemiluminescent reagent, was observed when two lanthanide salts (LaC...A rapid and concentration-dependent generation of superoxide anion (·O2^-), measured with a superoxide-specific Cypridina luciferin-derived chemiluminescent reagent, was observed when two lanthanide salts (LaCl3 and CdCl3 ) were added to tobacco ( Nicotiana tabacum) cell suspension culture. Addition of superoxide dismutase (480 U·ml^-1) and Tiron (5 μmol·L^-1) to cell culture suspension decreases the level of lanthanide cation-induced ·O2^- generation, suggesting that ·O2^- generation is extra-cellular. Pretreatment of the cell culture suspension with diphenyleneiodonium (10 and 50 μmol·L^-1 ), quinacrine ( 1 and 5 mmol· L^-1 ) and imidazol ( 10 mmol· L^-1 ), inhibitors of NADPH oxidase, notably inhibits the generation of superoxide induced by lanthanide cation, implying the possible involvement of activation of NADPH oxidase. In addition, addition of SHAM (1 and 5 mmol· L^-1), azide (0.2 and 1 mmol· L^-1 ), inhibitor of peroxidase, has no influence on ·O2^- generation.展开更多
The extraction behavior of Ln(III) (Ln=Nd, Sm, Tb and Yb) with trioctylphosphine oxide (TOPO) in molten paraffin wax has been studied. The effect of pH, TOPO concentration, medium, stirring time and the amount of sail...The extraction behavior of Ln(III) (Ln=Nd, Sm, Tb and Yb) with trioctylphosphine oxide (TOPO) in molten paraffin wax has been studied. The effect of pH, TOPO concentration, medium, stirring time and the amount of sails added on the distribution of lanthanides between two phases were investigated. Two different compositions Ln(H2O)(t-2) (TOPO)(2)(OH)(2)NO3 (Ln=Nd and Sm) and Ln(H2O)(s-1) (TOPO)(2)(OH)(NO3)(2) (Ln=Tb and Yb) were determined by slope analysis method. The equilibrium extraction constant K-ex and pH(1/2) value were calculated and the thermodynamic parameters were obtained from the dependence of K-ex on the temperature.展开更多
The paraffin wax was used as a diluent for 1-nitroso-2-naphthol(HA) and trioctylphosphine oxide(TOPO) in the extraction of lanthanides at 70℃. The composition of the extracted species was given as LnA_3(TOPO)_2 by me...The paraffin wax was used as a diluent for 1-nitroso-2-naphthol(HA) and trioctylphosphine oxide(TOPO) in the extraction of lanthanides at 70℃. The composition of the extracted species was given as LnA_3(TOPO)_2 by means of the slope analysis. The variation of the synergistic extraction equilibrium constant(K_ sex) was investigated at 60~80℃, and the thermodynamic data were calculated. The dependence of separation factors on temperature was also studied.展开更多
In this paper,we report the measurements of the specific heat of the lanthanide oxides(La_2O_3,CeO_2, Pr_6O_(11),Nd_2O_3,Sm_2O_3,Eu_2O_3,Gd_2O_3,Tb_4O_7,Dy_2O_3,Ho_2O_3,Er_2O_3,Tm_2O_3,Yb_2O_3,Lu_2O_3)from-150℃ to 80...In this paper,we report the measurements of the specific heat of the lanthanide oxides(La_2O_3,CeO_2, Pr_6O_(11),Nd_2O_3,Sm_2O_3,Eu_2O_3,Gd_2O_3,Tb_4O_7,Dy_2O_3,Ho_2O_3,Er_2O_3,Tm_2O_3,Yb_2O_3,Lu_2O_3)from-150℃ to 800℃ by using adiabatic scanning calorimeter.We found that chemical reactions occur during the heating pro- cess of initial La_2O_3 and Nd_2O_3 materials by using DTA and X-ray diffraction.The results of specific heat measurement show that except CeO_2 and Tb_4O_7,other twelve lanthanide oxides were accompanied with endothermal change and weight loss to a certain degree during the heating process.展开更多
This study has compared the ability of paramagnetic element oxides i.e. Pr, Eu, Yb in catalyst oxidation of methane. These have been prepared by precipitation, and then calcined at 600°C to get M2O3. Methane was ...This study has compared the ability of paramagnetic element oxides i.e. Pr, Eu, Yb in catalyst oxidation of methane. These have been prepared by precipitation, and then calcined at 600°C to get M2O3. Methane was then passed through a disk in KBr, and the reactions were conducted at room temperature;200°C and then 300°C. The reaction products were then identified by F.T.I.R spectroscopy. It was observed that these oxides have extracted the protons from methane and the CH3·radicals were evidently formed. This focused radical react further to give CH3O, C2H6 and the formation of Propionic acid is reported as one of the catalytic reaction products. The study also indicated the presence of aromatic products and in some instances, phenol was identified. Thereafter, the mechanism of the reaction was envisaged. For all the catalysts the conversion increases relatively with increasing the reaction temperature. The study can deduce that these oxides have the same ability as those of high paramagnetic properties to extract the proton, but the products are trapped and react further on the surface of the oxide.展开更多
Uniform and well-defined lanthanide hydroxide and oxide micro/nanorods Ln(OH)_3(Ln=La, Pr, Sm, Eu, Gd, Er) and Gd(OH)_3:Eu^(3+), Gd_2O_3:Eu^(3+) were successfully synthesized through a green and facile h...Uniform and well-defined lanthanide hydroxide and oxide micro/nanorods Ln(OH)_3(Ln=La, Pr, Sm, Eu, Gd, Er) and Gd(OH)_3:Eu^(3+), Gd_2O_3:Eu^(3+) were successfully synthesized through a green and facile hydrothermal method. Tetrabutylammonium hydroxide(TBAH) and lanthanide nitrides were used as the hydrothermal precursors without the addition of any templates/surfactants. The products were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), high-resolution transmission electron microscopy(HRTEM) and photoluminescence(PL) spectra. The result demonstrated that lanthanide hydroxide micro/nanorods with 20–80 nm in diameter and 50–450 in length were obtained. The size of the Ln(OH)_3(Ln=La, Pr, Sm, Eu, Gd, Er) rods increased with the increase of the atomic number. The size of the Gd(OH)_3:Eu^(3+) rods decreased with the increase of p H value by modulating the amount of the TBAH solution. The as-formed product via the hydrothermal process, Gd(OH)_3:Eu^(3+), could be transformed to Gd_2O_3:Eu^(3+) with the same morphology and a slight shrinking in size after a post annealing process. It is a facial method to synthesize photoluminescent nanomaterial of Gd_2O_3:Eu^(3+). The Gd_2O_3:Eu^(3+) microrods exhibited strong red emission corresponding to ~5D)0→~7F_2 transition(610 nm) of Eu^(3+) under UV light excitation(257 nm).展开更多
Due to its electron configuration (Xe) 4 f14 6 s2, Ytterbium (Yb) could form divalent oxide, YbO. In this study, the solid-state synthesis of metastable YbO was investigated by the oxidation of Yb metal at normal pres...Due to its electron configuration (Xe) 4 f14 6 s2, Ytterbium (Yb) could form divalent oxide, YbO. In this study, the solid-state synthesis of metastable YbO was investigated by the oxidation of Yb metal at normal pressure using two experimental conditions: 1) heat treatment of Yb metal under Ar gas atmosphere with metal carbonate as an oxygen source;and 2) heat treatment of Yb metal under the continuous gas flow condition using various gas atmospheres. Products were identified using the powder X-ray diffraction and scanning electron microscope. It was found that almost single phase YbO was obtained in the experimental condition 1) using the molar ratio of Ca-CO3/Yb = 0.4. Thermodynamic calculations suggested that the YbO formation be controlled not by thermodynamics but by kinetics, and further that the evaporation of Yb metal in the BN crucible played a key role for the formation of the meta-stable YbO.展开更多
Over the past decade, ultrathin lanthanide oxides (Ln2O3, Ln = La to Lu) nanomaterials have been intensively studied in the fields of rare earth materials science. This unique class of nanomaterials has shown many u...Over the past decade, ultrathin lanthanide oxides (Ln2O3, Ln = La to Lu) nanomaterials have been intensively studied in the fields of rare earth materials science. This unique class of nanomaterials has shown many unprecedented properties (big surface area, high surface effect, physical and chemical activities) and is thus being explored for numerous promising applications. In this review, a brief introduction of ultrathin Ln2O3 nanomaterials was given and their unique advantages were highlighted. Then, the typical synthetic methodologies were summarized and compared (thermal decomposition, solvothermal, soft template, co-precipition and microwave etc.). Due to the high surface effect, some promising applications of ultmthin Ln203 nanomaterials, such as drug delivery and catalysis of CO oxidation, were reviewed. Finally, on the basis of current achievements on ultrathin Ln203 nanomaterials, personal perspectives and challenges on future research directions were proposed.展开更多
This work studied the structural effects of hematite(α-Fe2 O3), 2-line ferrihydrite(HFO) and goethite(α-FeOOH) on diethyl phthalate ester(DEP) degradation. The results showed that the degradation of DEP was faster u...This work studied the structural effects of hematite(α-Fe2 O3), 2-line ferrihydrite(HFO) and goethite(α-FeOOH) on diethyl phthalate ester(DEP) degradation. The results showed that the degradation of DEP was faster under 365 nm light irradiation than in the dark in the presence of iron(hydr)oxides. The apparent kinetic rates of DEP degradation followed the order HFO > goethite ≈ hematite in the dark and HFO > hematite > goethite under 365 nm light irradiation. Two pathways governed H2 O2 decomposition efficiency on iron(hydr)oxide surfaces:(1) forming UOH on inherent surface hydroxyl groups(Fe-OH) and(2) producing O2 and H2 O on the surface oxygen vacancies. X-ray photoelectron spectroscopy(XPS) analyses indicated that HFO not only has high Fe-OH content but also has high Vo content, resulting in its low H2 O2 utilization efficiency(η). DEP was degraded through hydrogen abstraction and deesterification, and the major products were(OH)2-DEP, mono-ethyl phthalate(MEP), OH-MEP,and phthalate acid(PA). The study is important in understanding the transformation of phthalate esters in top surface soils and surface waters under ultraviolet light.展开更多
The development of biochar-based granule-like adsorbents suitable for scaled-up application has been attracting increasing attention in the field of water treatment.Herein,a new formable porous granulated biochar load...The development of biochar-based granule-like adsorbents suitable for scaled-up application has been attracting increasing attention in the field of water treatment.Herein,a new formable porous granulated biochar loaded with La-Fe(hydr)oxides/montmorillonite(LaFe/MB)was fabricated via a granulation and pyrolysis process for enhanced phosphorus(P)removal from wastewater.Montmorillonite acted as a binder that increased the size of the granulated biochar,while the use of Fe promoted the surface charge and facilitated the dispersion of La,which was responsible for selective phosphate removal.LaFe/MB exhibited rapid phosphate adsorption kinetics and a high maximum adsorption capacity(Langmuir model,52.12 mg P g^(−1)),which were better than those of many existing granulated materials.The desorption and recyclability experiments showed that LaFe/MB could be regenerated,and maintained 76.7%of its initial phosphate adsorption capacity after four adsorption cycles.The high hydraulic endurance strength retention rate of the developed material(91.6%)suggested high practical applicability in actual wastewater.Electro-static attraction,surface precipitation,and inner-sphere complexation via ligand exchange were found to be involved in selective P removal over a wide pH range of 3-9.The thermodynamic parameters were determined,which revealed the feasibility and spontaneity of adsorption.Based on approximate site energy distribution analyses,high distribution frequency contributed to efficient P removal.The research results provide a new insight that LaFe/MB shows great application prospects for advanced phosphate removal from wastewater.展开更多
A1-Fe (hydr)oxides with different A1/Fe molar ratios (4:1, 1:1, 1:4, 0:1) were prepared using a co- precipitation method and were then employed for simultaneous removal of arsenate and fluoride. The 4A1 : Fe ...A1-Fe (hydr)oxides with different A1/Fe molar ratios (4:1, 1:1, 1:4, 0:1) were prepared using a co- precipitation method and were then employed for simultaneous removal of arsenate and fluoride. The 4A1 : Fe was superior to other adsorbents for removal of arsenate and fluoride in the pH range of 5.0-9.0. The adsorption capacity of the A1-Fe (hydr)oxides for arsenate and fluoride at pH 6.50.3 increased with increasing A1 content in the adsorbents. The linear relationship between the amount of OH released from the adsorbent and the amount of arsenate or fluoride adsorbent by 4A1 : Fe indicated that the adsorption of arsenate and fluoride by A1- Fe (hydr)oxides was realized primarily through quantita- tive ligand exchange. Moreover, there was a very good correlation between the surface hydroxyl group densities of A1-Fe (hydr)oxides and their adsorption capacities for arsenate or fluoride. The highest adsorption capacity for arsenate and fluoride by 4A1 : Fe is mainly ascribed to its highest surface hydroxyl group density besides its largest pHpzc. The dosage of adsorbent necessary to remove arsenate and fluoride to meet the drinking water standard was mainly determined by the presence of fluoride since fluoride was generally present in groundwater at much higher concentration than arsenate.展开更多
文摘A rapid and concentration-dependent generation of superoxide anion (·O2^-), measured with a superoxide-specific Cypridina luciferin-derived chemiluminescent reagent, was observed when two lanthanide salts (LaCl3 and CdCl3 ) were added to tobacco ( Nicotiana tabacum) cell suspension culture. Addition of superoxide dismutase (480 U·ml^-1) and Tiron (5 μmol·L^-1) to cell culture suspension decreases the level of lanthanide cation-induced ·O2^- generation, suggesting that ·O2^- generation is extra-cellular. Pretreatment of the cell culture suspension with diphenyleneiodonium (10 and 50 μmol·L^-1 ), quinacrine ( 1 and 5 mmol· L^-1 ) and imidazol ( 10 mmol· L^-1 ), inhibitors of NADPH oxidase, notably inhibits the generation of superoxide induced by lanthanide cation, implying the possible involvement of activation of NADPH oxidase. In addition, addition of SHAM (1 and 5 mmol· L^-1), azide (0.2 and 1 mmol· L^-1 ), inhibitor of peroxidase, has no influence on ·O2^- generation.
基金the Natural Science Foundation of Gansu Province, China.
文摘The extraction behavior of Ln(III) (Ln=Nd, Sm, Tb and Yb) with trioctylphosphine oxide (TOPO) in molten paraffin wax has been studied. The effect of pH, TOPO concentration, medium, stirring time and the amount of sails added on the distribution of lanthanides between two phases were investigated. Two different compositions Ln(H2O)(t-2) (TOPO)(2)(OH)(2)NO3 (Ln=Nd and Sm) and Ln(H2O)(s-1) (TOPO)(2)(OH)(NO3)(2) (Ln=Tb and Yb) were determined by slope analysis method. The equilibrium extraction constant K-ex and pH(1/2) value were calculated and the thermodynamic parameters were obtained from the dependence of K-ex on the temperature.
文摘The paraffin wax was used as a diluent for 1-nitroso-2-naphthol(HA) and trioctylphosphine oxide(TOPO) in the extraction of lanthanides at 70℃. The composition of the extracted species was given as LnA_3(TOPO)_2 by means of the slope analysis. The variation of the synergistic extraction equilibrium constant(K_ sex) was investigated at 60~80℃, and the thermodynamic data were calculated. The dependence of separation factors on temperature was also studied.
文摘In this paper,we report the measurements of the specific heat of the lanthanide oxides(La_2O_3,CeO_2, Pr_6O_(11),Nd_2O_3,Sm_2O_3,Eu_2O_3,Gd_2O_3,Tb_4O_7,Dy_2O_3,Ho_2O_3,Er_2O_3,Tm_2O_3,Yb_2O_3,Lu_2O_3)from-150℃ to 800℃ by using adiabatic scanning calorimeter.We found that chemical reactions occur during the heating pro- cess of initial La_2O_3 and Nd_2O_3 materials by using DTA and X-ray diffraction.The results of specific heat measurement show that except CeO_2 and Tb_4O_7,other twelve lanthanide oxides were accompanied with endothermal change and weight loss to a certain degree during the heating process.
文摘This study has compared the ability of paramagnetic element oxides i.e. Pr, Eu, Yb in catalyst oxidation of methane. These have been prepared by precipitation, and then calcined at 600°C to get M2O3. Methane was then passed through a disk in KBr, and the reactions were conducted at room temperature;200°C and then 300°C. The reaction products were then identified by F.T.I.R spectroscopy. It was observed that these oxides have extracted the protons from methane and the CH3·radicals were evidently formed. This focused radical react further to give CH3O, C2H6 and the formation of Propionic acid is reported as one of the catalytic reaction products. The study also indicated the presence of aromatic products and in some instances, phenol was identified. Thereafter, the mechanism of the reaction was envisaged. For all the catalysts the conversion increases relatively with increasing the reaction temperature. The study can deduce that these oxides have the same ability as those of high paramagnetic properties to extract the proton, but the products are trapped and react further on the surface of the oxide.
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China(LY14B010004)
文摘Uniform and well-defined lanthanide hydroxide and oxide micro/nanorods Ln(OH)_3(Ln=La, Pr, Sm, Eu, Gd, Er) and Gd(OH)_3:Eu^(3+), Gd_2O_3:Eu^(3+) were successfully synthesized through a green and facile hydrothermal method. Tetrabutylammonium hydroxide(TBAH) and lanthanide nitrides were used as the hydrothermal precursors without the addition of any templates/surfactants. The products were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), high-resolution transmission electron microscopy(HRTEM) and photoluminescence(PL) spectra. The result demonstrated that lanthanide hydroxide micro/nanorods with 20–80 nm in diameter and 50–450 in length were obtained. The size of the Ln(OH)_3(Ln=La, Pr, Sm, Eu, Gd, Er) rods increased with the increase of the atomic number. The size of the Gd(OH)_3:Eu^(3+) rods decreased with the increase of p H value by modulating the amount of the TBAH solution. The as-formed product via the hydrothermal process, Gd(OH)_3:Eu^(3+), could be transformed to Gd_2O_3:Eu^(3+) with the same morphology and a slight shrinking in size after a post annealing process. It is a facial method to synthesize photoluminescent nanomaterial of Gd_2O_3:Eu^(3+). The Gd_2O_3:Eu^(3+) microrods exhibited strong red emission corresponding to ~5D)0→~7F_2 transition(610 nm) of Eu^(3+) under UV light excitation(257 nm).
文摘Due to its electron configuration (Xe) 4 f14 6 s2, Ytterbium (Yb) could form divalent oxide, YbO. In this study, the solid-state synthesis of metastable YbO was investigated by the oxidation of Yb metal at normal pressure using two experimental conditions: 1) heat treatment of Yb metal under Ar gas atmosphere with metal carbonate as an oxygen source;and 2) heat treatment of Yb metal under the continuous gas flow condition using various gas atmospheres. Products were identified using the powder X-ray diffraction and scanning electron microscope. It was found that almost single phase YbO was obtained in the experimental condition 1) using the molar ratio of Ca-CO3/Yb = 0.4. Thermodynamic calculations suggested that the YbO formation be controlled not by thermodynamics but by kinetics, and further that the evaporation of Yb metal in the BN crucible played a key role for the formation of the meta-stable YbO.
基金supported by the Start-up Funding from Xi’an Jiaotong Universitythe Fundamental Research Funds for the Central Universities (2015qngz12)+1 种基金the National Natural Science Foundation of China (21371140)the China National Funds for Excellent Young Scientists (21522106)
文摘Over the past decade, ultrathin lanthanide oxides (Ln2O3, Ln = La to Lu) nanomaterials have been intensively studied in the fields of rare earth materials science. This unique class of nanomaterials has shown many unprecedented properties (big surface area, high surface effect, physical and chemical activities) and is thus being explored for numerous promising applications. In this review, a brief introduction of ultrathin Ln2O3 nanomaterials was given and their unique advantages were highlighted. Then, the typical synthetic methodologies were summarized and compared (thermal decomposition, solvothermal, soft template, co-precipition and microwave etc.). Due to the high surface effect, some promising applications of ultmthin Ln203 nanomaterials, such as drug delivery and catalysis of CO oxidation, were reviewed. Finally, on the basis of current achievements on ultrathin Ln203 nanomaterials, personal perspectives and challenges on future research directions were proposed.
基金funded by the National Natural Science Foundation of China (No. 41773125)the Research Instrument Development Program of Chinese Academy of Sciences (No. YZ201638)the 135 Research Program of the Chinese Academy of Sciences (No. ISSASIP1620)
文摘This work studied the structural effects of hematite(α-Fe2 O3), 2-line ferrihydrite(HFO) and goethite(α-FeOOH) on diethyl phthalate ester(DEP) degradation. The results showed that the degradation of DEP was faster under 365 nm light irradiation than in the dark in the presence of iron(hydr)oxides. The apparent kinetic rates of DEP degradation followed the order HFO > goethite ≈ hematite in the dark and HFO > hematite > goethite under 365 nm light irradiation. Two pathways governed H2 O2 decomposition efficiency on iron(hydr)oxide surfaces:(1) forming UOH on inherent surface hydroxyl groups(Fe-OH) and(2) producing O2 and H2 O on the surface oxygen vacancies. X-ray photoelectron spectroscopy(XPS) analyses indicated that HFO not only has high Fe-OH content but also has high Vo content, resulting in its low H2 O2 utilization efficiency(η). DEP was degraded through hydrogen abstraction and deesterification, and the major products were(OH)2-DEP, mono-ethyl phthalate(MEP), OH-MEP,and phthalate acid(PA). The study is important in understanding the transformation of phthalate esters in top surface soils and surface waters under ultraviolet light.
基金National Key Research and Development Program of China(2021YFD1700805)National Natural Science Foundation of China(41807132,22078136,41877090)the Jiangsu Province Agricultural Independent Innovation Fund(CX(19)2003).
文摘The development of biochar-based granule-like adsorbents suitable for scaled-up application has been attracting increasing attention in the field of water treatment.Herein,a new formable porous granulated biochar loaded with La-Fe(hydr)oxides/montmorillonite(LaFe/MB)was fabricated via a granulation and pyrolysis process for enhanced phosphorus(P)removal from wastewater.Montmorillonite acted as a binder that increased the size of the granulated biochar,while the use of Fe promoted the surface charge and facilitated the dispersion of La,which was responsible for selective phosphate removal.LaFe/MB exhibited rapid phosphate adsorption kinetics and a high maximum adsorption capacity(Langmuir model,52.12 mg P g^(−1)),which were better than those of many existing granulated materials.The desorption and recyclability experiments showed that LaFe/MB could be regenerated,and maintained 76.7%of its initial phosphate adsorption capacity after four adsorption cycles.The high hydraulic endurance strength retention rate of the developed material(91.6%)suggested high practical applicability in actual wastewater.Electro-static attraction,surface precipitation,and inner-sphere complexation via ligand exchange were found to be involved in selective P removal over a wide pH range of 3-9.The thermodynamic parameters were determined,which revealed the feasibility and spontaneity of adsorption.Based on approximate site energy distribution analyses,high distribution frequency contributed to efficient P removal.The research results provide a new insight that LaFe/MB shows great application prospects for advanced phosphate removal from wastewater.
文摘A1-Fe (hydr)oxides with different A1/Fe molar ratios (4:1, 1:1, 1:4, 0:1) were prepared using a co- precipitation method and were then employed for simultaneous removal of arsenate and fluoride. The 4A1 : Fe was superior to other adsorbents for removal of arsenate and fluoride in the pH range of 5.0-9.0. The adsorption capacity of the A1-Fe (hydr)oxides for arsenate and fluoride at pH 6.50.3 increased with increasing A1 content in the adsorbents. The linear relationship between the amount of OH released from the adsorbent and the amount of arsenate or fluoride adsorbent by 4A1 : Fe indicated that the adsorption of arsenate and fluoride by A1- Fe (hydr)oxides was realized primarily through quantita- tive ligand exchange. Moreover, there was a very good correlation between the surface hydroxyl group densities of A1-Fe (hydr)oxides and their adsorption capacities for arsenate or fluoride. The highest adsorption capacity for arsenate and fluoride by 4A1 : Fe is mainly ascribed to its highest surface hydroxyl group density besides its largest pHpzc. The dosage of adsorbent necessary to remove arsenate and fluoride to meet the drinking water standard was mainly determined by the presence of fluoride since fluoride was generally present in groundwater at much higher concentration than arsenate.