期刊文献+
共找到336篇文章
< 1 2 17 >
每页显示 20 50 100
An Efficient Smoothing and Thresholding Image Segmentation Framework with Weighted Anisotropic-Isotropic Total Variation
1
作者 Kevin Bui Yifei Lou +1 位作者 Fredrick Park Jack Xin 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1369-1405,共37页
In this paper,we design an efficient,multi-stage image segmentation framework that incorporates a weighted difference of anisotropic and isotropic total variation(AITV).The segmentation framework generally consists of... In this paper,we design an efficient,multi-stage image segmentation framework that incorporates a weighted difference of anisotropic and isotropic total variation(AITV).The segmentation framework generally consists of two stages:smoothing and thresholding,thus referred to as smoothing-and-thresholding(SaT).In the first stage,a smoothed image is obtained by an AITV-regularized Mumford-Shah(MS)model,which can be solved efficiently by the alternating direction method of multipliers(ADMMs)with a closed-form solution of a proximal operator of the l_(1)-αl_(2) regularizer.The convergence of the ADMM algorithm is analyzed.In the second stage,we threshold the smoothed image by K-means clustering to obtain the final segmentation result.Numerical experiments demonstrate that the proposed segmentation framework is versatile for both grayscale and color images,effcient in producing high-quality segmentation results within a few seconds,and robust to input images that are corrupted with noise,blur,or both.We compare the AITV method with its original convex TV and nonconvex TVP(O<p<1)counterparts,showcasing the qualitative and quantitative advantages of our proposed method. 展开更多
关键词 image segmentation Non-convex optimization Mumford-Shah(MS)model Alternating direction method of multipliers(ADMMs) Proximal operator
下载PDF
Mobile-Deep Based PCB Image Segmentation Algorithm Research
2
作者 Lisang Liu Chengyang Ke He Lin 《Computers, Materials & Continua》 SCIE EI 2023年第11期2443-2461,共19页
Aiming at the problems of inaccurate edge segmentation,the hole phenomenon of segmenting large-scale targets,and the slow segmentation speed of printed circuit boards(PCB)in the image segmentation process,a PCB image ... Aiming at the problems of inaccurate edge segmentation,the hole phenomenon of segmenting large-scale targets,and the slow segmentation speed of printed circuit boards(PCB)in the image segmentation process,a PCB image segmentation model Mobile-Deep based on DeepLabv3+semantic segmentation framework is proposed.Firstly,the DeepLabv3+feature extraction network is replaced by the lightweight model MobileNetv2,which effectively reduces the number of model parameters;secondly,for the problem of positive and negative sample imbalance,a new loss function is composed of Focal Loss combined with Dice Loss to solve the category imbalance and improve the model discriminative ability;in addition,a more efficient atrous spatial pyramid pooling(E-ASPP)module is proposed.In addition,a more efficient E-ASPP module is proposed,and the Roberts crossover operator is chosen to sharpen the image edges to improve the model accuracy;finally,the network structure is redesigned to further improve the model accuracy by drawing on the multi-scale feature fusion approach.The experimental results show that the proposed segmentation algorithm achieves an average intersection ratio of 93.45%,a precision of 94.87%,a recall of 93.65%,and a balance score of 93.64%on the PCB test set,which is more accurate than the common segmentation algorithms Hrnetv2,UNet,PSPNet,and PCBSegClassNet,and the segmentation speed is faster. 展开更多
关键词 PCB boards image segmentation mobile-deep loss function roberts crossover operator
下载PDF
A New Method of Multi-Focus Image Fusion Using Laplacian Operator and Region Optimization 被引量:1
3
作者 Chao Wang Rui Yuan +3 位作者 Yuqiu Sun Yuanxiang Jiang Changsheng Chen Xiangliang Lin 《Journal of Computer and Communications》 2018年第5期106-118,共13页
Considering the continuous advancement in the field of imaging sensor, a host of other new issues have emerged. A major problem is how to find focus areas more accurately for multi-focus image fusion. The multi-focus ... Considering the continuous advancement in the field of imaging sensor, a host of other new issues have emerged. A major problem is how to find focus areas more accurately for multi-focus image fusion. The multi-focus image fusion extracts the focused information from the source images to construct a global in-focus image which includes more information than any of the source images. In this paper, a novel multi-focus image fusion based on Laplacian operator and region optimization is proposed. The evaluation of image saliency based on Laplacian operator can easily distinguish the focus region and out of focus region. And the decision map obtained by Laplacian operator processing has less the residual information than other methods. For getting precise decision map, focus area and edge optimization based on regional connectivity and edge detection have been taken. Finally, the original images are fused through the decision map. Experimental results indicate that the proposed algorithm outperforms the other series of algorithms in terms of both subjective and objective evaluations. 展开更多
关键词 image FUSION laplacian operator Multi-Focus REGION OPTIMIZATION
下载PDF
Connections between Operator-Splitting Methods and Deep Neural Networks with Applications in Image Segmentation
4
作者 Hao Liu Xue-Cheng Tai Raymond Chan 《Annals of Applied Mathematics》 2023年第4期406-428,共23页
Deep neural network is a powerful tool for many tasks.Understanding why it is so successful and providing a mathematical explanation is an important problem and has been one popular research direction in past years.In... Deep neural network is a powerful tool for many tasks.Understanding why it is so successful and providing a mathematical explanation is an important problem and has been one popular research direction in past years.In the literature of mathematical analysis of deep neural networks,a lot of works is dedicated to establishing representation theories.How to make connections between deep neural networks and mathematical algorithms is still under development.In this paper,we give an algorithmic explanation for deep neural networks,especially in their connections with operator splitting.We show that with certain splitting strategies,operator-splitting methods have the same structure as networks.Utilizing this connection and the Potts model for image segmentation,two networks inspired by operator-splitting methods are proposed.The two networks are essentially two operator-splitting algorithms solving the Potts model.Numerical experiments are presented to demonstrate the effectiveness of the proposed networks. 展开更多
关键词 Potts model operator splitting deep neural network image segmentation
原文传递
基于Laplacian算子的航飞影像预处理分析 被引量:1
5
作者 高松涛 李锦明 +2 位作者 邱赞富 汤敏 王志明 《测绘与空间地理信息》 2024年第1期176-179,共4页
模糊影像会直接影响空中三角测量解算的结果,因此需要对无人机航飞影像进行预处理。分别使用Soble算子和Laplacian算子对航飞影像中模糊的照片进行边缘检测,识别出模糊照片。分析2种算子在航片预处理中的适用性,并编译软件自动分离出模... 模糊影像会直接影响空中三角测量解算的结果,因此需要对无人机航飞影像进行预处理。分别使用Soble算子和Laplacian算子对航飞影像中模糊的照片进行边缘检测,识别出模糊照片。分析2种算子在航片预处理中的适用性,并编译软件自动分离出模糊和无效的照片。结果表明:Sobel和Laplacian算子均可以准确地分离出模糊影像,影像识别率可达100%。其中,Laplacian算子对航飞影像的边缘检测敏感度高于Sobel算子,Laplacian算子得到的方差值更大,判定影像清晰与模糊的界限更准确。最后通过快速检索算法与Laplacian算法相结合,编译完成无人机航飞影像预处理模块,提高无人机航片预处理效率。 展开更多
关键词 SOBEL算子 laplacian算子 模糊影像 方差值
下载PDF
Two-Phase Image Segmentation by the Allen-Cahn Equation and a Nonlocal Edge Detection Operator
6
作者 Zhonghua Qiao Qian Zhang 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2022年第4期1147-1172,共26页
Based on a nonlocal Laplacian operator,a novel edge detection method of the grayscale image is proposed in this paper.This operator utilizes the information of neighbor pixels for a given pixel to obtain effective and... Based on a nonlocal Laplacian operator,a novel edge detection method of the grayscale image is proposed in this paper.This operator utilizes the information of neighbor pixels for a given pixel to obtain effective and delicate edge detection.The nonlocal edge detection method is used as an initialization for solving the Allen-Cahn equation to achieve two-phase segmentation of the grayscale image.Efficient exponential time differencing(ETD)solvers are employed in the time integration,and finite difference method is adopted in space discretization.The maximum bound principle and energy stability of the proposed numerical schemes are proved.The capability of our segmentation method has been verified in numerical experiments for different types of grayscale images. 展开更多
关键词 image segmentation Allen-Cahn equation nonlocal edge detection operator maximum principle energy stability
原文传递
Hybrid Segmentation Approach for Different Medical Image Modalities
7
作者 Walid El-Shafai Amira A.Mahmoud +6 位作者 El-Sayed M.El-Rabaie Taha E.Taha Osama F.Zahran Adel S.El-Fishawy Naglaa F.Soliman Amel A.Alhussan Fathi E.Abd El-Samie 《Computers, Materials & Continua》 SCIE EI 2022年第11期3454-3471,共18页
The segmentation process requires separating the image region into sub-regions of similar properties.Each sub-region has a group of pixels having the same characteristics,such as texture or intensity.This paper sugges... The segmentation process requires separating the image region into sub-regions of similar properties.Each sub-region has a group of pixels having the same characteristics,such as texture or intensity.This paper suggests an efficient hybrid segmentation approach for different medical image modalities based on particle swarm optimization(PSO)and improved fast fuzzy C-means clustering(IFFCM)algorithms.An extensive comparative study on different medical images is presented between the proposed approach and other different previous segmentation techniques.The existing medical image segmentation techniques incorporate clustering,thresholding,graph-based,edge-based,active contour,region-based,and watershed algorithms.This paper extensively analyzes and summarizes the comparative investigation of these techniques.Finally,a prediction of the improvement involves the combination of these techniques is suggested.The obtained results demonstrate that the proposed hybrid medical image segmentation approach provides superior outcomes in terms of the examined evaluation metrics compared to the preceding segmentation techniques. 展开更多
关键词 image segmentation ultrasonic images X-ray images CT images PET images MR images fuzzy c-mean morphological operations active contour
下载PDF
Efficient Segmentation Approach for Different Medical Image Modalities
8
作者 Walid El-Shafai Amira A.Mahmoud +6 位作者 El-Sayed M.El-Rabaie Taha E.Taha Osama F.Zahran Adel S.El-Fishawy Naglaa F.Soliman Amel A.Alhussan Fathi E.Abd El-Samie 《Computers, Materials & Continua》 SCIE EI 2022年第11期3119-3135,共17页
This paper presents a study of the segmentation of medical images.The paper provides a solid introduction to image enhancement along with image segmentation fundamentals.In the first step,the morphological operations ... This paper presents a study of the segmentation of medical images.The paper provides a solid introduction to image enhancement along with image segmentation fundamentals.In the first step,the morphological operations are employed to ensure image detail protection and noise-immunity.The objective of using morphological operations is to remove the defects in the texture of the image.Secondly,the Fuzzy C-Means(FCM)clustering algorithm is used to modify membership function based only on the spatial neighbors instead of the distance between pixels within local spatial neighbors and cluster centers.The proposed technique is very simple to implement and significantly fast since it is not necessary to compute the distance between the neighboring pixels and the cluster centers.It is also efficient when dealing with noisy images because of its ability to efficiently improve the membership partition matrix.Simulation results are performed on different medical image modalities.Ultrasonic(Us),X-ray(Mammogram),Computed Tomography(CT),Positron Emission Tomography(PET),and Magnetic Resonance(MR)images are the main medical image modalities used in this work.The obtained results illustrate that the proposed technique can achieve good results with a short time and efficient image segmentation.Simulation results on different image modalities show that the proposed technique can achieve segmentation accuracies of 98.83%,99.71%,99.83%,99.85%,and 99.74%for Us,Mammogram,CT,PET,and MRI images,respectively. 展开更多
关键词 image segmentation ULTRASONIC MAMMOGRAM CT PET MRI morphological operations FCM active contours
下载PDF
Automated segmentation technique with self-driven post-processing for histopathological breast cancer images
9
作者 Chetna Kaushal Anshu Singla 《CAAI Transactions on Intelligence Technology》 EI 2020年第4期294-300,共7页
Automated segmentation of histopathological images is a challenging task to detect cancerous cells in breast tissue.Recent reviews state high accuracy to segment image,but depends on user input,say window area size,ti... Automated segmentation of histopathological images is a challenging task to detect cancerous cells in breast tissue.Recent reviews state high accuracy to segment image,but depends on user input,say window area size,time steps,level set,magnification factor and so on.To extract the region of interest effectively,the subject expert performs post-processing operations several times on the segmentation results with different input values for different parameters say,area opening,fill holes and selects most appropriate enhanced image required for further analysis.The authors proposed an automated segmentation technique followed by self-driven post-processing operations to detect cancerous cells effectively.The post-processing method itself determines the value of different parameters for different operations based on segmented results obtained.The proposed technique has the following features:(i)technique is context sensitive;(ii)no prior setting of time step,weighted area coefficient parameters is required;(iii)magnification independent;(iv)post-processing operations are self-driven which enhance segmentation results adaptively.The experimental results are compared with four state-of-the-art techniques:fuzzy C-means,spatial fuzzy C-means,spatial neutrosophic distance regularised level set and convolutional neural network-based PangNet.Experimental results obtained on two publicly available data sets show that the proposed technique outperforms effectively. 展开更多
关键词 operations image segmentation
下载PDF
拉普拉斯卷积的双路径特征融合遥感图像智能解译方法
10
作者 曾军英 顾亚谨 +5 位作者 曹路 秦传波 邓森耀 翟懿奎 甘俊英 谢梓源 《现代电子技术》 北大核心 2024年第17期65-72,共8页
由于遥感图像存在多尺度变化和目标边缘模糊等问题,对其进行智能解译仍然是一项极具挑战性的工作。传统的语义分割方法在处理这些问题时存在局限性,难以有效捕捉全局和局部信息。针对上述问题,文中提出一种双路径特征融合分割方法 DFNe... 由于遥感图像存在多尺度变化和目标边缘模糊等问题,对其进行智能解译仍然是一项极具挑战性的工作。传统的语义分割方法在处理这些问题时存在局限性,难以有效捕捉全局和局部信息。针对上述问题,文中提出一种双路径特征融合分割方法 DFNet。首先,使用Swin Transformer作为主干提取全局语义特征,以处理像素之间的长距离依赖关系,从而促进对图像中不同区域相关性的理解;其次,将拉普拉斯卷积嵌入到空间分支,以捕获局部细节信息,加强目标地物边缘信息表达;最后,引入多尺度双向特征融合模块,充分利用图像中的全局和局部信息,以增强多尺度信息的获取能力。在实验中,使用了三个公开的高分辨率遥感图像数据集进行验证,并通过消融实验验证了所提模型不同模块的作用。实验结果表明,所提方法在Uavid数据集、Potsdam数据集、LoveDA数据集的mIoU达到了71.32%、85.58%、54.01%,提高了语义分割的性能,使分割结果更为精细。 展开更多
关键词 语义分割 遥感图像 多尺度信息 拉普拉斯卷积 边缘信息 双路径 特征融合 智能解译
下载PDF
一种改进的Laplacian SVM的SAR图像分割算法 被引量:5
11
作者 刘若辰 邹海双 +2 位作者 张莉 张萍 焦李成 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2011年第3期250-254,259,共6页
当有标识的样本数量有限时,Laplacian SVM算法需要加入尽量多的无标识样本,以提高分类精度.但同时当无标识样本数很大时,算法的时间和空间复杂度将难以接受.为了将Laplacian SVM应用于SAR图像分割这样的大规模分类问题中,提出了一种改进... 当有标识的样本数量有限时,Laplacian SVM算法需要加入尽量多的无标识样本,以提高分类精度.但同时当无标识样本数很大时,算法的时间和空间复杂度将难以接受.为了将Laplacian SVM应用于SAR图像分割这样的大规模分类问题中,提出了一种改进的Laplacian支持向量机算法(Improved Laplacian Support Vector Machine,Im-proved Laplacian SVM),首先采用分水岭算法将原始SAR图像分成多个小原型块,提取每个小原型块的图像特征作为训练样本.再采用改进的Laplacian SVM算法得到小原型块的分类结果.通过3幅SAR图像验证了提出的方法,实验表明该方法不仅提高了分割的准确性同时减少了Laplacian SVM算法用于图像分割时的运行时间. 展开更多
关键词 LapSVM算法 图像分割 分水岭算法 SAR图像
下载PDF
基于复剪切波变换与VGG19模型的医学图像融合方法 被引量:1
12
作者 王钰帏 王雷 +1 位作者 郭新萍 程天琪 《山东理工大学学报(自然科学版)》 CAS 2024年第4期53-60,共8页
针对传统医学图像融合方法存在的细节信息不够清晰、边缘信息易丢失和图像失真等缺点,以及深度学习网络缺乏足够的训练数据集等问题,提出了一种基于复剪切波变换和预训练网络模型VGG19的多模态医学图像融合方法。首先,利用复剪切波变换... 针对传统医学图像融合方法存在的细节信息不够清晰、边缘信息易丢失和图像失真等缺点,以及深度学习网络缺乏足够的训练数据集等问题,提出了一种基于复剪切波变换和预训练网络模型VGG19的多模态医学图像融合方法。首先,利用复剪切波变换提取医学图像边缘和纹理信息,并得到多尺度、多方向的子带系数。然后,使用加权局部能量和修正的拉普拉斯算子对低频子带系数进行融合;引入预训练的VGG19提取多层特征图,结合加权评估规则来获取高频子带的融合结果。最后,对融合的高频和低频子带,施加复剪切波逆变换重构融合图像。实验表明,该方法得到的融合图像,不仅可以清晰地显示图像的细节信息和边缘信息,而且能够有效抑制伪影和失真现象的产生,在主观视觉比较和6种客观评价指标下能够达到更佳融合效果。 展开更多
关键词 医学图像 图像融合 复剪切波变换 VGG19模型 修正的拉普拉斯算子
下载PDF
基于Laplacian算子的图像增强 被引量:25
13
作者 孙增国 韩崇昭 《计算机应用研究》 CSCD 北大核心 2007年第1期222-223,240,共3页
使用Laplacian算子检测图像的边缘纹理等细节信息,然后以适当比例线性叠加原始图像和细节信息,从而完成图像增强。不同增强方法的比较试验表明,基于Laplacian算子的图像增强方法既能增强图像的高频分量,又能保持图像的低频分量,是图像... 使用Laplacian算子检测图像的边缘纹理等细节信息,然后以适当比例线性叠加原始图像和细节信息,从而完成图像增强。不同增强方法的比较试验表明,基于Laplacian算子的图像增强方法既能增强图像的高频分量,又能保持图像的低频分量,是图像增强的有效方法。 展开更多
关键词 laplacian算子 图像增强 噪声抑制 细节保持
下载PDF
超像素分割和波段分割的高光谱图像去噪
14
作者 李华君 蒋俊正 +1 位作者 周芳 全英汇 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2024年第5期122-135,共14页
针对现有的高光谱图像去噪算法采用逐波段或者全波段方式去噪,未能充分利用高光谱图像波段相似性的问题,提出了超像素分割和波段分割的高光谱图像去噪算法。文中将构建双层图模型,包括上层图和下层图模型。首先,对高光谱图像应用超像素... 针对现有的高光谱图像去噪算法采用逐波段或者全波段方式去噪,未能充分利用高光谱图像波段相似性的问题,提出了超像素分割和波段分割的高光谱图像去噪算法。文中将构建双层图模型,包括上层图和下层图模型。首先,对高光谱图像应用超像素分割技术,得到一系列的超像素。对超像素内的像素建模为节点,像素之间用边连接,构建一系列下层图,从而充分利用高光谱图像的空间信息和保留边界信息。根据超像素分割结果,沿着波段维分割,形成超像素体,以充分利用高光谱图像的波段相似性。将超像素体建模为节点,超像素体之间用边连接,构建上层图。基于构建的图结构和图分割方式,将高光谱图像去噪问题归结为一系列的优化问题,在优化问题中利用克罗内克乘积图重新定义了图拉普拉斯正则项。最后,实验结果表明,与现有算法相比,文中所提算法具有更高的平均峰值信噪比、平均结构相似性和光谱差异性。 展开更多
关键词 高光谱图像去噪 图信号处理 超像素分割 波段分割 图拉普拉斯正则项
下载PDF
基于Laplacian算子的图像边缘检测方法研究 被引量:15
15
作者 万军 徐汀荣 《现代电子技术》 2004年第21期92-93,96,共3页
在分析图像边缘特性及其 L aplacian算子检测原理的基础上对经典 L aplacian算子算法进行改进 ,以便能准确地检测出图像中的目标边缘 。
关键词 laplacian算子 图像边缘检测 高斯滤波 门限值 彩色图像
下载PDF
基于Laplacian算子的小波变换图像融合算法 被引量:3
16
作者 谢红 王石川 解武 《信息技术》 2016年第11期114-117,共4页
针对传统融合算法在图像融合时,不能很好地保留源图像信息和边缘信息的缺点,提出了一种基于Laplacian算子的小波变换图像融合算法。该算法利用小波变换对图像进行分解,分解后得到图像的低频系数和高频系数;对高频系数采用基于对两个Lapl... 针对传统融合算法在图像融合时,不能很好地保留源图像信息和边缘信息的缺点,提出了一种基于Laplacian算子的小波变换图像融合算法。该算法利用小波变换对图像进行分解,分解后得到图像的低频系数和高频系数;对高频系数采用基于对两个Laplacian模板算子卷积结果相比较并进行筛选的融合规则;对低频系数采用基于拉普拉斯清晰度评价函数和8邻域局部方差相结合的融合规则;最后进行小波逆变换得到融合图像。对实验结果结合主观和多种客观评价方法进行分析。结果表明,该改进算法与传统融合算法相比融合效果更好,融合图像具有边缘信息丰富、图像清晰度高等优点。 展开更多
关键词 小波变换 图像融合 laplacian算子 拉普拉斯清晰度评价函数 方差
下载PDF
基于Laplacian算子和灰色关联度的图像边缘检测方法 被引量:17
17
作者 桂预风 吴建平 《汕头大学学报(自然科学版)》 2011年第2期69-73,共5页
结合Laplacian算子与灰色关联度提出了一种新的图像分割技术,即以Laplacian变形算子作为参考序列,计算每个像素点及其8-领域的灰色关联度,从而辨别该点是边缘点还是非边缘点.实验结果证明,该方法可以有效地提取图像边缘,而且可以通过调... 结合Laplacian算子与灰色关联度提出了一种新的图像分割技术,即以Laplacian变形算子作为参考序列,计算每个像素点及其8-领域的灰色关联度,从而辨别该点是边缘点还是非边缘点.实验结果证明,该方法可以有效地提取图像边缘,而且可以通过调整关联度的阈值和分辨系数来控制边缘信息量. 展开更多
关键词 laplacian算子 灰色关联度 图像分割 边缘检测 MARKOV随机场
下载PDF
基于LVQ神经网络的水果图像分割研究
18
作者 郭勇 黄骏 +2 位作者 陈维 高华杰 李梦超 《井冈山大学学报(自然科学版)》 2024年第4期76-83,共8页
由于传统边沿检测算子在水果颜色多样、亮度不均匀时,难以分割得到完整、无噪声的二值图像且依赖优化的阈值,本研究提出了一种基于LVQ神经网络的水果图像分割方案。首先将彩色图像转变为灰度图像;然后对Canny算子获得的边沿图像随机选... 由于传统边沿检测算子在水果颜色多样、亮度不均匀时,难以分割得到完整、无噪声的二值图像且依赖优化的阈值,本研究提出了一种基于LVQ神经网络的水果图像分割方案。首先将彩色图像转变为灰度图像;然后对Canny算子获得的边沿图像随机选取一些像素作为网络的学习监督信号,仅以灰度图像中相同位置像素3×3邻域的Kirsch算子梯度值作为输入,训练权值;最后重新将原灰度图像的Kirsch算子梯度值输入到训练好的网络中,获得封闭的边沿并填充得到二值图像。考察了14幅像素为640×480的水果图像,结果表明:网络在很宽广的阈值范围内(0.001~0.99)分割得到完整、一致的二值图像;面积误差最小为0.9%,最大为8.83%,不依赖于优化的阈值,不需要对原始图像滤波预处理。与没有阈值及滤波的算法相比,本方案的误差和时间复杂度均更低;与设置了阈值和/或滤波的算法相比,本方案与之相当,甚至效果更优。 展开更多
关键词 水果图像分割 LVQ神经网络 KIRSCH算子 CANNY算子 面积误差 时间复杂度 阈值
下载PDF
基于改进拉普拉斯金字塔的红外图像增强算法
19
作者 韩龙 赵雅婷 +1 位作者 左超 何辉煌 《激光与红外》 CAS CSCD 北大核心 2024年第10期1626-1632,共7页
针对在进行红外图像增强时容易出现细节和边缘纹理丢失的问题,提出了基于改进拉普拉斯金字塔的红外图像增强算法。首先,构建拉普拉斯金字塔时,在原有的差分运算中加入Canny边缘检测,提取图像的基础层和细节层;其次,在基础层使用γ-CLAH... 针对在进行红外图像增强时容易出现细节和边缘纹理丢失的问题,提出了基于改进拉普拉斯金字塔的红外图像增强算法。首先,构建拉普拉斯金字塔时,在原有的差分运算中加入Canny边缘检测,提取图像的基础层和细节层;其次,在基础层使用γ-CLAHE算法改善对比度和亮度;对细节层通过拉普拉斯算子进一步增强细节层中的边缘纹理;最后将细节层与基础层重建得到增强后的红外图像。经实验验证,本算法与传统Clahe算法、Gamma校正及其他算法相比,其中,PSNR最大提高了5.34,SSIM值最大提高了0.6,熵值最大提高了2.07,验证了本算法能够在红外图像增强时提高对比度,突出边缘信息,保持结构特性完整,在红外图像增强处理中是有效的。 展开更多
关键词 红外图像 图像增强 拉普拉斯金字塔 CANNY 自适应伽马变换
下载PDF
基于Roberts算子的激光夜视图像自动分割方法
20
作者 李星军 邵志伟 梁嘉怡 《激光杂志》 CAS 北大核心 2024年第5期110-114,共5页
激光夜视图像分辨率较低,边缘信息难以检测,导致图像分割过程存在效率低、精度较差等问题,为此设计基于Roberts算子的激光夜视图像自动分割方法。使用相机采集夜间场景色彩信息,采用加权平均法重构图像数据,输出完整的激光夜视图像。拟... 激光夜视图像分辨率较低,边缘信息难以检测,导致图像分割过程存在效率低、精度较差等问题,为此设计基于Roberts算子的激光夜视图像自动分割方法。使用相机采集夜间场景色彩信息,采用加权平均法重构图像数据,输出完整的激光夜视图像。拟合图像周边相邻像素,利用三次样条插值函数平滑处理图像,运用Roberts算子计算图像梯度,实现激光夜视图像边缘检测,得到图像插值后的平滑信息,提升夜视图像分辨率。通过模糊C均值聚类明确聚类范围,引入混沌粒子群算法实现图像分割。实验结果表明,所提方法分割差异率在3%以下,图像分割Dice相似性系数在0.97以上,图像分割平均耗时为9 s。 展开更多
关键词 ROBERTS算子 三次样条插值函数 激光夜视图像 图像分割 模糊C均值聚类
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部