The absence of sub-grid scale(SGS) motions leads to severe errors in particle pair dynamics, which represents a great challenge to the large eddy simulation of particle-laden turbulent flow. In order to address this i...The absence of sub-grid scale(SGS) motions leads to severe errors in particle pair dynamics, which represents a great challenge to the large eddy simulation of particle-laden turbulent flow. In order to address this issue,data from direct numerical simulation(DNS) of homogenous isotropic turbulence coupled with Lagrangian particle tracking are used as a benchmark to evaluate the corresponding results of filtered DNS(FDNS). It is found that the filtering process in FDNS will lead to a non-monotonic variation of the particle collision statistics, including radial distribution function, radial relative velocity, and the collision kernel. The peak of radial distribution function shifts to the large-inertia region due to the lack of SGS motions, and the analysis of the local flowstructure characteristic variable at particle position indicates that the most effective interaction scale between particles and fluid eddies is increased in FDNS. Moreover,this scale shifting has an obvious effect on the odd-order moments of the probability density function of radial relative velocity, i.e. the skewness, which exhibits a strong correlation to the variance of radial distribution function in FDNS.As a whole, the radial distribution function, together with radial relative velocity, can compensate the SGS effects for the collision kernel in FDNS when the Stokes number based on the Kolmogorov time scale is greater than 3.0. However,it still leaves considerable errors for St< 3.0.展开更多
Loads generated after an air crash, ship collision, and other accidents may destroy very large floating structures (VLFSs) and create additional connector loads. In this study, the combined effects of ship collision...Loads generated after an air crash, ship collision, and other accidents may destroy very large floating structures (VLFSs) and create additional connector loads. In this study, the combined effects of ship collision and wave loads are considered to establish motion differential equations for a multi-body VLFS. A time domain calculation method is proposed to calculate the connector load of the VLFS in waves. The Longuet-Higgins model is employed to simulate the stochastic wave load. Fluid force and hydrodynamic coefficient are obtained with DNV Sesam software. The motion differential equation is calculated by applying the time domain method when the frequency domain hydrodynamic coefficient is converted into the memory function of the motion differential equation of the time domain. As a result of the combined action of wave and impact loads, high-frequency oscillation is observed in the time history curve of the connector load. At wave directions of 0° and 75°, the regularities of the time history curves of the connector loads in different directions are similar and the connector loads of C1 and C2 in the X direction are the largest. The oscillation load is observed in the connector in the Y direction at a wave direction of 75° and not at 0° This paper presents a time domain calculation method of connector load to provide a certain reference function for the future development of Chinese VLFS展开更多
为研究船舶在大角度和高流速下与大跨度斜拉桥发生的碰撞响应,结合国内外相关规范对船桥碰撞中最大撞击力计算方法和撞击方式,对内河航运过程中可能发生的碰撞角度和方式进行分析,并以重庆外环江津长江大桥作为依托工程,采用附加质量法...为研究船舶在大角度和高流速下与大跨度斜拉桥发生的碰撞响应,结合国内外相关规范对船桥碰撞中最大撞击力计算方法和撞击方式,对内河航运过程中可能发生的碰撞角度和方式进行分析,并以重庆外环江津长江大桥作为依托工程,采用附加质量法建立了7 000 t级散货船和等比例斜拉桥模型,计算了船舶在四种通航水位下的正撞、侧撞和漂撞的最大撞击力,比较各规范的计算值与数值模拟结果,对不同情况下的计算结果进行对比研究。结果表明,国内外各规范更适用于船舶撞击桥塔,撞击点位于桥梁承台时最大撞击力将远高于规范计算值;在船舶与桥梁正面碰撞中,《美国公路桥梁设计规范》(American Association of State Highway and Transportation Officials, AASHTO)计算值与模拟值吻合程度高;在侧撞中,尤其在撞击角度为10°~25°时,建议采用《公路桥梁抗撞设计规范》;船舶漂撞桥塔产生的撞击力大约为正向撞击的1/4,该情况可采用《铁路桥涵设计规范》进行计算。多角度船桥碰撞研究结果可为三峡库区高变幅水位下船桥碰撞安全风险评估和桥梁抗撞设计提供参考。展开更多
基金supported by the National Natural Science Foundation of China (Grants 51390494, 51306065, and 51276076)the Foundation of State Key Laboratory of Coal Combustion (Grant FSKLCCB1702)
文摘The absence of sub-grid scale(SGS) motions leads to severe errors in particle pair dynamics, which represents a great challenge to the large eddy simulation of particle-laden turbulent flow. In order to address this issue,data from direct numerical simulation(DNS) of homogenous isotropic turbulence coupled with Lagrangian particle tracking are used as a benchmark to evaluate the corresponding results of filtered DNS(FDNS). It is found that the filtering process in FDNS will lead to a non-monotonic variation of the particle collision statistics, including radial distribution function, radial relative velocity, and the collision kernel. The peak of radial distribution function shifts to the large-inertia region due to the lack of SGS motions, and the analysis of the local flowstructure characteristic variable at particle position indicates that the most effective interaction scale between particles and fluid eddies is increased in FDNS. Moreover,this scale shifting has an obvious effect on the odd-order moments of the probability density function of radial relative velocity, i.e. the skewness, which exhibits a strong correlation to the variance of radial distribution function in FDNS.As a whole, the radial distribution function, together with radial relative velocity, can compensate the SGS effects for the collision kernel in FDNS when the Stokes number based on the Kolmogorov time scale is greater than 3.0. However,it still leaves considerable errors for St< 3.0.
基金Foundation item: Supported by the National Natural Science Foundation of China (51309123), National Key Basic Research and Development Plan (973 Plan, 2013CB036104), Jiangsu Province Natural Science Research Projects in Colleges and Universities (13KJB570002), Open Foundation of State Key Laboratory of Ocean Engineering (1407), "Qing Lan Project" of Colleges and Universities in Jiangsu Province, Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
文摘Loads generated after an air crash, ship collision, and other accidents may destroy very large floating structures (VLFSs) and create additional connector loads. In this study, the combined effects of ship collision and wave loads are considered to establish motion differential equations for a multi-body VLFS. A time domain calculation method is proposed to calculate the connector load of the VLFS in waves. The Longuet-Higgins model is employed to simulate the stochastic wave load. Fluid force and hydrodynamic coefficient are obtained with DNV Sesam software. The motion differential equation is calculated by applying the time domain method when the frequency domain hydrodynamic coefficient is converted into the memory function of the motion differential equation of the time domain. As a result of the combined action of wave and impact loads, high-frequency oscillation is observed in the time history curve of the connector load. At wave directions of 0° and 75°, the regularities of the time history curves of the connector loads in different directions are similar and the connector loads of C1 and C2 in the X direction are the largest. The oscillation load is observed in the connector in the Y direction at a wave direction of 75° and not at 0° This paper presents a time domain calculation method of connector load to provide a certain reference function for the future development of Chinese VLFS
文摘为研究船舶在大角度和高流速下与大跨度斜拉桥发生的碰撞响应,结合国内外相关规范对船桥碰撞中最大撞击力计算方法和撞击方式,对内河航运过程中可能发生的碰撞角度和方式进行分析,并以重庆外环江津长江大桥作为依托工程,采用附加质量法建立了7 000 t级散货船和等比例斜拉桥模型,计算了船舶在四种通航水位下的正撞、侧撞和漂撞的最大撞击力,比较各规范的计算值与数值模拟结果,对不同情况下的计算结果进行对比研究。结果表明,国内外各规范更适用于船舶撞击桥塔,撞击点位于桥梁承台时最大撞击力将远高于规范计算值;在船舶与桥梁正面碰撞中,《美国公路桥梁设计规范》(American Association of State Highway and Transportation Officials, AASHTO)计算值与模拟值吻合程度高;在侧撞中,尤其在撞击角度为10°~25°时,建议采用《公路桥梁抗撞设计规范》;船舶漂撞桥塔产生的撞击力大约为正向撞击的1/4,该情况可采用《铁路桥涵设计规范》进行计算。多角度船桥碰撞研究结果可为三峡库区高变幅水位下船桥碰撞安全风险评估和桥梁抗撞设计提供参考。