This paper proposes a 3D 2-node element for beams and cables. Main improvements of the element are two new interpolation functions for beam axis and cross-sectional rotation. New interpolation functions employ implici...This paper proposes a 3D 2-node element for beams and cables. Main improvements of the element are two new interpolation functions for beam axis and cross-sectional rotation. New interpolation functions employ implicit functions to simulate large deformations. In the translational interpolation function, two parameters which affect lateral deflection geometry are defined implicitly through nonlinear equations. The proposed translational interpolation function is shown to be more accurate than Hermitian function at large deformations. In the rotational interpolation function, twist rate is defined implicitly through a torsional continuity equation. Cross-sectional rotation which is strictly consistent to beam axis is obtained through separate bending rotation interpolation and torsional rotation interpolation. The element model fully accounts for geometric nonlinearities and coupling effects,and thus,can simulate cables with zero bending stiffness. Stiffness matrix and load vector have been derived using symbolic computation. Source code has been generated automatically.Numerical examples show that the proposed element has significantly higher accuracy than conventional 2-node beam elements under the same meshes for geometrically nonlinear problems.展开更多
为了加快大型风电场的仿真速率,提出了一种基于等效短线路解耦的模型分割方案。首先对于机组类型单一的大型风电场,采用输出倍乘与集电线路等值的方法进行简化建模。在此基础上,针对风电场内线路较短,难以采用长输电线路自然解耦来并行...为了加快大型风电场的仿真速率,提出了一种基于等效短线路解耦的模型分割方案。首先对于机组类型单一的大型风电场,采用输出倍乘与集电线路等值的方法进行简化建模。在此基础上,针对风电场内线路较短,难以采用长输电线路自然解耦来并行运算的缺点,提出对等值后的机组连接线与连接升压站的长汇集线之间进行参数补偿,从而满足输电线路在一个步长上的解耦判据。在Matlab/Simulink搭建仿真模型,对模型分割前后进行了对比。仿真结果验证了所提方案的可行性。在此基础上采用状态空间节点(state space node,SSN)法对风电机组内部划分群组,最终在RT-LAB平台上实现了大型海上风电场的实时化仿真。展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.91215302)
文摘This paper proposes a 3D 2-node element for beams and cables. Main improvements of the element are two new interpolation functions for beam axis and cross-sectional rotation. New interpolation functions employ implicit functions to simulate large deformations. In the translational interpolation function, two parameters which affect lateral deflection geometry are defined implicitly through nonlinear equations. The proposed translational interpolation function is shown to be more accurate than Hermitian function at large deformations. In the rotational interpolation function, twist rate is defined implicitly through a torsional continuity equation. Cross-sectional rotation which is strictly consistent to beam axis is obtained through separate bending rotation interpolation and torsional rotation interpolation. The element model fully accounts for geometric nonlinearities and coupling effects,and thus,can simulate cables with zero bending stiffness. Stiffness matrix and load vector have been derived using symbolic computation. Source code has been generated automatically.Numerical examples show that the proposed element has significantly higher accuracy than conventional 2-node beam elements under the same meshes for geometrically nonlinear problems.
文摘为了加快大型风电场的仿真速率,提出了一种基于等效短线路解耦的模型分割方案。首先对于机组类型单一的大型风电场,采用输出倍乘与集电线路等值的方法进行简化建模。在此基础上,针对风电场内线路较短,难以采用长输电线路自然解耦来并行运算的缺点,提出对等值后的机组连接线与连接升压站的长汇集线之间进行参数补偿,从而满足输电线路在一个步长上的解耦判据。在Matlab/Simulink搭建仿真模型,对模型分割前后进行了对比。仿真结果验证了所提方案的可行性。在此基础上采用状态空间节点(state space node,SSN)法对风电机组内部划分群组,最终在RT-LAB平台上实现了大型海上风电场的实时化仿真。