In a convective scheme featuring a discretized cloud size density, the assumed lateral mixing rate is inversely proportional to the exponential coefficient of plume size. This follows a typical assumption of-1, but it...In a convective scheme featuring a discretized cloud size density, the assumed lateral mixing rate is inversely proportional to the exponential coefficient of plume size. This follows a typical assumption of-1, but it has unveiled inherent uncertainties, especially for deep layer clouds. Addressing this knowledge gap, we conducted comprehensive large eddy simulations and comparative analyses focused on terrestrial regions. Our investigation revealed that cloud formation adheres to the tenets of Bernoulli trials, illustrating power-law scaling that remains consistent regardless of the inherent deep layer cloud attributes existing between cloud size and the number of clouds. This scaling paradigm encompasses liquid, ice, and mixed phases in deep layer clouds. The exponent characterizing the interplay between cloud scale and number in the deep layer cloud, specifically for liquid, ice, or mixed-phase clouds, resembles that of shallow convection,but converges closely to zero. This convergence signifies a propensity for diminished cloud numbers and sizes within deep layer clouds. Notably, the infusion of abundant moisture and the release of latent heat by condensation within the lower atmospheric strata make substantial contributions. However, this role in ice phase formation is limited. The emergence of liquid and ice phases in deep layer clouds is facilitated by the latent heat and influenced by the wind shear inherent in the middle levels. These interrelationships hold potential applications in formulating parameterizations and post-processing model outcomes.展开更多
The optimum models of harvesting yield and net profits of large diameter trees for broadleaved forest were developed, of which include matrix growth sub-model, harvesting cost and wood price sub-models, based on the d...The optimum models of harvesting yield and net profits of large diameter trees for broadleaved forest were developed, of which include matrix growth sub-model, harvesting cost and wood price sub-models, based on the data from Hongshi Forestry Bureau, in Changbai Mountain region, Jilin Province, China. The data were measured in 232 permanent sample plots. With the data of permanent sample plots, the parameters of transition probability and ingrowth models were estimated, and some models were compared and partly modified. During the simulation of stand structure, four factors such as largest diameter residual tree (LDT), the ratio of the number of trees in a given diameter class to those in the next larger diameter class (q), residual basal area (RBA) and selective cutting cycle (C) were considered. The simulation results showed that the optimum stand structure parameters for large diameter trees are as follows: q is 1.2, LDT is 46cm, RBA is larger than 26 m^2 and selective cutting cycle time (C) is between 10 and 20 years.展开更多
Based on the building of a theoretical model for the large eddy structure, the nonlinear effect of the local rough wall on the large eddy structure in the boundary layer is studied by direct numerical simulation. Nume...Based on the building of a theoretical model for the large eddy structure, the nonlinear effect of the local rough wall on the large eddy structure in the boundary layer is studied by direct numerical simulation. Numerical results show that factors of the local rough feature, the distributing structure and the intensity, etc. play an important role in the evolution of the large eddy structure in the boundary layer.展开更多
The large cylinder is a new-type structure that has been applied to harbor and offshore engineering. An analytic method of the relationship between loads and the structure displacement is developed based on the failur...The large cylinder is a new-type structure that has been applied to harbor and offshore engineering. An analytic method of the relationship between loads and the structure displacement is developed based on the failure mode of deep embedded large cylinder structures. It can be used to calculate directly the soil resistance and the ultimate bearing capacity of the structure under usage. A new criterion of the large cylinder structure, which discriminates the deep embedded cylinder from the shallow embedded cylinder, is defined. Model tests prove that the proposed method is feasible for the analysis of deep embedded large cylinder structures.展开更多
A time domain finite element method (FEM) for the analysis of transient elastic response of a very large floating structure (VLFS) subjected to arbitrary time-dependent external loads is presented. This method is ...A time domain finite element method (FEM) for the analysis of transient elastic response of a very large floating structure (VLFS) subjected to arbitrary time-dependent external loads is presented. This method is developed directly in time domain and the hydrodynamic problem is formulated based on linear, inviscid and slightly compressible fluid theory and the structural response is analyzed on the thin plate assumption. The time domain finite element procedure herein is validated by comparing numerical results with available experimental data. Finally, the transient elastic response of a pontoon-type VLFS under the landing of an airplane is computed by the proposed time domain FEM. The time histories of the applied force and the position and velocity of an airplane during landing are modeled with data from a Boeing 747-400 jumbo jet.展开更多
Great attention has been paid to the development of very large floating structures. Owing to their extreme large size and great flexibility, the coupling between the structural deformation and fluid motion is signific...Great attention has been paid to the development of very large floating structures. Owing to their extreme large size and great flexibility, the coupling between the structural deformation and fluid motion is significant. This is a typical problem of hydroelasticity. Efficient and accurate estimation of the hydroelastic response of very large floating structures in waves is very important for design. In this paper, the plate Green function and fluid Green function are combined to analyze the hydroelastic response of very large floating structures. The plate Green function here is a new one proposed by the authors and it satisfies all boundary conditions for free-free rectangular plates on elastic foundations. The results are compared with some experimental data. It is shown that the method proposed in this paper is efficient and accurate. Finally, various factors affecting the hydroelastic response of very large floating structures are also studied.展开更多
A comprehensive protective structure with rigidity and flexibility was put forward and designed in view of the quality and safety problems for the double vertical explosive welding of large titanium/steel cladding pla...A comprehensive protective structure with rigidity and flexibility was put forward and designed in view of the quality and safety problems for the double vertical explosive welding of large titanium/steel cladding plate.The movement speed and displacement of the protective structure was calculated by establishing its physics model.The dynamics and stabilization properties were analyzed,and the protective structure parameters were optimized and devised.The comprehensive protective structure,which is composed of rigidity unit and flexibility wall,can bear the impact of detonation wave and the high-speed movement of the cladding plate.There are no damage and deformation in the protective structure and the cladding plate.The protective structure can be used many times.The bonding rate of the Ti/steel plate obtained was nearly 100%,and there is no deformation,surface cracks,and big wave and micro-defects.Therefore,the protective problems of the double vertical explosive welding can be solved effectively by the protective structure.展开更多
In order to establish the baseline finite element model for structural health monitoring,a new method of model updating was proposed after analyzing the uncertainties of measured data and the error of finite element m...In order to establish the baseline finite element model for structural health monitoring,a new method of model updating was proposed after analyzing the uncertainties of measured data and the error of finite element model.In the new method,the finite element model was replaced by the multi-output support vector regression machine(MSVR).The interval variables of the measured frequency were sampled by Latin hypercube sampling method.The samples of frequency were regarded as the inputs of the trained MSVR.The outputs of MSVR were the target values of design parameters.The steel structure of National Aquatic Center for Beijing Olympic Games was introduced as a case for finite element model updating.The results show that the proposed method can avoid solving the problem of complicated calculation.Both the estimated values and associated uncertainties of the structure parameters can be obtained by the method.The static and dynamic characteristics of the updated finite element model are in good agreement with the measured data.展开更多
A herringbone water-sediment separation structure(hereinafter referred to as "herringbone structure") has been shown to be effective in separating coarse inorganic debris; however, less is known regarding th...A herringbone water-sediment separation structure(hereinafter referred to as "herringbone structure") has been shown to be effective in separating coarse inorganic debris; however, less is known regarding the large wood(LW) filtration effect in this structure. This paper presents preliminary research on the wood filtration effect of the herringbone structure based on physical model tests.The results show that the herringbone structure exhibited effective performance in large wood size segregation, with a 100% component filtration rate for LW that diameter(D) larger than ribbed beam opening width(a). The total filtration rate also exceeded 80% when the Fraud number(Fr) is larger than 2.64 and increased with the increase of Fr. After exceeding Frmax, total filtration rate would be decreased due to overflow. Beside flow condition,structure parameters influence significantly on LW filtration rate. We attempt to explain the filtration process via particle contact trajectory and particle movement trajectory. The inclined angle of ribbed beam(γ) contributed the most variation to the filtration rate via influencing the coincidence with particle contact trajectory and particle movement trajectory. The high sensitivity coefficient of ribbed beam(θ) under relatively low Fr conditions implies remarkable influences on LW filtration effects by causing clogging problem. The ribbed beam opening width(a) together with LW diameter(D) influenced the size segregation performance.展开更多
The dynamic characteristics of the large scale coherent structures in a forced free shear layer are experi- mentally studied by means of flow visualization. The quantitative measurements are acquired by the use of a L...The dynamic characteristics of the large scale coherent structures in a forced free shear layer are experi- mentally studied by means of flow visualization. The quantitative measurements are acquired by the use of a LDV. It is shown that the development of the coherent structures can be greatly influenced by upstream artificial perturbations and as a result the mixing in the layer can be controlled. Like vortex merging, vortex splitting is also a common evolu- tion pattern in the development of the coherent structures.展开更多
Gas explosion is a process involving complex hydrodynamics and chemical reactions.In order to investigate the interaction between the flame behavior and the dynamic overpressure resulting from the explosion of a premi...Gas explosion is a process involving complex hydrodynamics and chemical reactions.In order to investigate the interaction between the flame behavior and the dynamic overpressure resulting from the explosion of a premixed gasoline-air mixture in a confined space,a large eddy simulation(LES)strategy coupled with sub-grid combustion model has been implemented.The considered confined space consists of a long duct and four branches symmetrically distributed on both sides of the long duct.Comparisons between the simulated and experimental results have been considered with regard to the flame structure,flame speed and overpressure characteristics.It is shown that the explosion process can qualitatively be reproduced by the numerical simulation.Due to the branch structure,vortices are generated near the joint of the branch and long duct.Vortices rotate in opposite directions in the different branches.When the flame propagates into the branch,the flame front is influenced by the flow field structure and becomes more and more distorted.The overpressure displays a similar behavior in the two branches which have a different distance from the ignition point.It is finally shown that the overpressure change law can directly be put in relation with the shape of flame front.展开更多
The mining space of large mining height coal face is large,the range of movement and caving of rock strata is large and the stability of supports at coal face is low and damage rate of supports is high,which significa...The mining space of large mining height coal face is large,the range of movement and caving of rock strata is large and the stability of supports at coal face is low and damage rate of supports is high,which significantly affects the safe and efficient production of coal mines.By similar simulation experiment and theoretical analysis,the mode of fractured roofing structure of large mining height coal face and the method of determination of reasonable support resistance of the support was evaluated.Analysis shows that the structural mode of "combined cantilever beam – non-hinged roofing – hinged roofing" of the large mining height coal face appears at the roofing of large mining height coal face.The supporting factor of caved gangue at the gob is introduced,the calculating equations of the fractured step distance of roofing were derived and conventional calculating method of caved height of roofing was corrected and the method of determination of the length and height of each structural area of the roofing was provided.With reference to the excavating conditions at Jinhuagong coal mine in Datong minefield,the dimensions of structural areas of the roofing of the coal face were determined and analyzed,and reasonable support resistance of the height coal face was acquired.By selecting Model ZZ13000/28/60 support and with procedures of advanced pre-cracking blasting,the safe production of large mining height coal face was assured.展开更多
Loads generated after an air crash, ship collision, and other accidents may destroy very large floating structures (VLFSs) and create additional connector loads. In this study, the combined effects of ship collision...Loads generated after an air crash, ship collision, and other accidents may destroy very large floating structures (VLFSs) and create additional connector loads. In this study, the combined effects of ship collision and wave loads are considered to establish motion differential equations for a multi-body VLFS. A time domain calculation method is proposed to calculate the connector load of the VLFS in waves. The Longuet-Higgins model is employed to simulate the stochastic wave load. Fluid force and hydrodynamic coefficient are obtained with DNV Sesam software. The motion differential equation is calculated by applying the time domain method when the frequency domain hydrodynamic coefficient is converted into the memory function of the motion differential equation of the time domain. As a result of the combined action of wave and impact loads, high-frequency oscillation is observed in the time history curve of the connector load. At wave directions of 0° and 75°, the regularities of the time history curves of the connector loads in different directions are similar and the connector loads of C1 and C2 in the X direction are the largest. The oscillation load is observed in the connector in the Y direction at a wave direction of 75° and not at 0° This paper presents a time domain calculation method of connector load to provide a certain reference function for the future development of Chinese VLFS展开更多
The Emeishan large igneous province(hereafter named by its acronym ELIP) is the first accepted large igneous region in China.The current study tries to reconstruct the density structure of the crust in this region. Fo...The Emeishan large igneous province(hereafter named by its acronym ELIP) is the first accepted large igneous region in China.The current study tries to reconstruct the density structure of the crust in this region. For this purpose, we conducted the gravity survey along an 800-km-long profile, which stretched laterally along the latitude 27°N from Lijiang(Yunnan province) to Guiyang(Guizhou province). The fieldwork included 338 gravity measurements distributed from the inner zone to the outer zone of the mantle plume head.After a series of gravity reductions, we calculated the Bouguer gravity anomaly and then constructed the density model for ELIP by iterative forward modeling from an initial density model tightly constrained by wide-angle seismic reflection data. The topography of the Moho, here physically interpreted as a density discontinuity of ~0.4 g·cm^(–3), gradually rises from the inner zone(~50 km deep) to the outer zone(~40 km), describes a thicker crust in the inner zone than in any other segment of the profile and largely reproduces the shape of the Bouguer gravity anomaly curve. Both the Bouguer gravity and the density structure show significant differences with respect to the inner zone and the other two zones of ELIP according to the commonly accepted partition of the Emeishan area. A thicker and denser middle-lower crust seems to be the main feature of the western section of the profile, which is likely related to its mafic magmatic composition due to magmatic underplating of the Permian mantle plume.展开更多
The actuator and sensor placement problem for active vibration control of large cable net structures is investigated in this paper.Since the structures exhibit closely spaced modes in the range of low frequencies,the ...The actuator and sensor placement problem for active vibration control of large cable net structures is investigated in this paper.Since the structures exhibit closely spaced modes in the range of low frequencies,the number of modes to be considered is quite large after modal truncation,while only a limited number of actuators and sensors are to be placed.This makes it hard to determine the actuator and sensor locations with the existing placement methods in the literature such as the methods based on the controllability/observability grammian.To deal with this issue,an actuator and sensor placement method based on singular value decompositions(SVD)of the input and output matrices is proposed,which guarantees the modal controllability and observability of the system.The effectiveness of the SVD based method is verified through numerical simulations in which comparisons are conducted between randomly-chosen locations and the optimal ones obtained by a genetic algorithm.展开更多
The response of dynamic wave pressures on structures would be more complicated and bring about new phenomena under the dynamic interaction between soil and structure. In order to better understand the response charact...The response of dynamic wave pressures on structures would be more complicated and bring about new phenomena under the dynamic interaction between soil and structure. In order to better understand the response characteristics on deeply embedded large cylindrical structures under random waves, and accordingly to offer valuable findings for engineering, the authors designed wave flume experiments to investigate comparatively dynamic wave pressures on a single and on continuous cylinders with two different embedment depths in response to two wave spectra.The time histories of the water surface elevation and the corresponding dynamic wave pressures exerted on the cylinder were analyzed in the frequency domain. By calculating the transfer function and spectral density for dynamic wave pressures along the height and around the circumference of the cylinder, experimental results of the single cylinder were compared with the theoretical results based on the linear diffraction theory, and detailed comparisons were also carried out between the single and continuous cylinders. Some new findings and the corresponding analysis are reported in present paper. The investigation on continuous cylinders will be used in particular for reference in engineering applications because information is scarce on studying such kind of problem both analytically and experimentally.展开更多
A method of coupled BEM-FEM analysis for the elastic spatial structure system is presented. It can be applied to the calculation of the stress and deformation of the large-diamater cylinder structure system and it is ...A method of coupled BEM-FEM analysis for the elastic spatial structure system is presented. It can be applied to the calculation of the stress and deformation of the large-diamater cylinder structure system and it is suitable for symmetric or non-symmetric structures under the distributed or concentrated load. Numerical examples show that the proposed method and computer program BEFEM are quite efficient in the analysis of the large-diameter cylinder structure problems in ocean engineering.展开更多
An approach to sequence planning for on-orbit assembly of large space truss structures in a multirobot environment is presented. A hierarchical representation of large space truss structures at the structural volume e...An approach to sequence planning for on-orbit assembly of large space truss structures in a multirobot environment is presented. A hierarchical representation of large space truss structures at the structural volume element level and strut level is adopted. The representation of connectivity matrix and directed graph is respectively presented at the strut level and SVE level. The multirobot environment that consists of autonomous space robots and struts is supposed. Then the multirobot serial assembly strategy,assembly states,assembly tasks and assembly sequences are described. The assembly sequence planning algorithms at the strut level and SVE level are respectively discussed. The results of the simulations show that this approach is feasible and efficient. Two extensions of this approach include more accurate assessment of the efficiency representation and improvements in planning algorithm. In the future,the assembly sequence planning of more large space truss structures and complex multirobot environments and assembly tasks will be considered.展开更多
Hydrogen gas sensor device with simple planar structure based on p^+ silicon substrate with n-type epi-layer was fabricated only by using a lift-off technique of an evaporated metal film.The device consists of Ohmic s...Hydrogen gas sensor device with simple planar structure based on p^+ silicon substrate with n-type epi-layer was fabricated only by using a lift-off technique of an evaporated metal film.The device consists of Ohmic source and drain electrodes and platinum Schottky gate electrode.This sensor device has a little similar property as FET.Current-voltage characteristics between the source and drain of the device are sensitive to hydrogen gas.The voltage difference between in hydrogen ambient and oxygen ambient is about 2.3 volts for a constant current of 0.9 mA.The device can detect 0.4% hydrogen gas in air.Based on oxidation reaction of hydrogen on the surface of the platinum gate,hydrogen sensitivity of the device changes by the coexisting oxygen concentration.Electrons flow in the buried channel formed between the gate electrode and the p^+n junction.It was confirmed that the gate bias influences the properties.The current-voltage property changes also depending on the wiring method.展开更多
The decentralized stabilization of continuous and discrete linear large scale systems with symmetric circulant structure was studied.A few sufficient conditions on decentralized stabilization of such systems were prop...The decentralized stabilization of continuous and discrete linear large scale systems with symmetric circulant structure was studied.A few sufficient conditions on decentralized stabilization of such systems were proposed.For the continuous systems,by introducing a concept called the magnitude of interconnected structure,a very important property that the decentralized stabilization of such systems is fully determined by the structure of each isolated subsystem that is obtained when the magnitude of interconnected structure of the overall system is given.So the decentralized stabilization of such systems can be got by only appropriately designing or modifying the structure of each isolated subsystem,no matter how complicated the interconnected structure of the overall system is.A algorithm for obtaining decentralized state feedback to stabilize the overall system is given.The discrete systems were also discussed.The results show that there is a great dfference on decentralized stabilization between continuous case and discrete case.展开更多
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grant No.2019QZKK010203)the National Natural Science Foundation of China (Grant No.42175174 and 41975130)+1 种基金the Natural Science Foundation of Sichuan Province (Grant No.2022NSFSC1092)the Sichuan Provincial Innovation Training Program for College Students (Grant No.S202210621009)。
文摘In a convective scheme featuring a discretized cloud size density, the assumed lateral mixing rate is inversely proportional to the exponential coefficient of plume size. This follows a typical assumption of-1, but it has unveiled inherent uncertainties, especially for deep layer clouds. Addressing this knowledge gap, we conducted comprehensive large eddy simulations and comparative analyses focused on terrestrial regions. Our investigation revealed that cloud formation adheres to the tenets of Bernoulli trials, illustrating power-law scaling that remains consistent regardless of the inherent deep layer cloud attributes existing between cloud size and the number of clouds. This scaling paradigm encompasses liquid, ice, and mixed phases in deep layer clouds. The exponent characterizing the interplay between cloud scale and number in the deep layer cloud, specifically for liquid, ice, or mixed-phase clouds, resembles that of shallow convection,but converges closely to zero. This convergence signifies a propensity for diminished cloud numbers and sizes within deep layer clouds. Notably, the infusion of abundant moisture and the release of latent heat by condensation within the lower atmospheric strata make substantial contributions. However, this role in ice phase formation is limited. The emergence of liquid and ice phases in deep layer clouds is facilitated by the latent heat and influenced by the wind shear inherent in the middle levels. These interrelationships hold potential applications in formulating parameterizations and post-processing model outcomes.
基金This paper was supported by National Strategy Key Project, Research and Paradigm on Ecological Harvesting and Regeneration Tech-nique for Northeast Natural Forest (2001BA510B07-02)
文摘The optimum models of harvesting yield and net profits of large diameter trees for broadleaved forest were developed, of which include matrix growth sub-model, harvesting cost and wood price sub-models, based on the data from Hongshi Forestry Bureau, in Changbai Mountain region, Jilin Province, China. The data were measured in 232 permanent sample plots. With the data of permanent sample plots, the parameters of transition probability and ingrowth models were estimated, and some models were compared and partly modified. During the simulation of stand structure, four factors such as largest diameter residual tree (LDT), the ratio of the number of trees in a given diameter class to those in the next larger diameter class (q), residual basal area (RBA) and selective cutting cycle (C) were considered. The simulation results showed that the optimum stand structure parameters for large diameter trees are as follows: q is 1.2, LDT is 46cm, RBA is larger than 26 m^2 and selective cutting cycle time (C) is between 10 and 20 years.
基金the National Natural Science Foundation of China(10672052)the Natural Science Foundation of Jiangsu Province(BK2007178)~~
文摘Based on the building of a theoretical model for the large eddy structure, the nonlinear effect of the local rough wall on the large eddy structure in the boundary layer is studied by direct numerical simulation. Numerical results show that factors of the local rough feature, the distributing structure and the intensity, etc. play an important role in the evolution of the large eddy structure in the boundary layer.
文摘The large cylinder is a new-type structure that has been applied to harbor and offshore engineering. An analytic method of the relationship between loads and the structure displacement is developed based on the failure mode of deep embedded large cylinder structures. It can be used to calculate directly the soil resistance and the ultimate bearing capacity of the structure under usage. A new criterion of the large cylinder structure, which discriminates the deep embedded cylinder from the shallow embedded cylinder, is defined. Model tests prove that the proposed method is feasible for the analysis of deep embedded large cylinder structures.
文摘A time domain finite element method (FEM) for the analysis of transient elastic response of a very large floating structure (VLFS) subjected to arbitrary time-dependent external loads is presented. This method is developed directly in time domain and the hydrodynamic problem is formulated based on linear, inviscid and slightly compressible fluid theory and the structural response is analyzed on the thin plate assumption. The time domain finite element procedure herein is validated by comparing numerical results with available experimental data. Finally, the transient elastic response of a pontoon-type VLFS under the landing of an airplane is computed by the proposed time domain FEM. The time histories of the applied force and the position and velocity of an airplane during landing are modeled with data from a Boeing 747-400 jumbo jet.
文摘Great attention has been paid to the development of very large floating structures. Owing to their extreme large size and great flexibility, the coupling between the structural deformation and fluid motion is significant. This is a typical problem of hydroelasticity. Efficient and accurate estimation of the hydroelastic response of very large floating structures in waves is very important for design. In this paper, the plate Green function and fluid Green function are combined to analyze the hydroelastic response of very large floating structures. The plate Green function here is a new one proposed by the authors and it satisfies all boundary conditions for free-free rectangular plates on elastic foundations. The results are compared with some experimental data. It is shown that the method proposed in this paper is efficient and accurate. Finally, various factors affecting the hydroelastic response of very large floating structures are also studied.
基金Project was supported by the National Natural Science Foundation of China(Grant No.51541112).
文摘A comprehensive protective structure with rigidity and flexibility was put forward and designed in view of the quality and safety problems for the double vertical explosive welding of large titanium/steel cladding plate.The movement speed and displacement of the protective structure was calculated by establishing its physics model.The dynamics and stabilization properties were analyzed,and the protective structure parameters were optimized and devised.The comprehensive protective structure,which is composed of rigidity unit and flexibility wall,can bear the impact of detonation wave and the high-speed movement of the cladding plate.There are no damage and deformation in the protective structure and the cladding plate.The protective structure can be used many times.The bonding rate of the Ti/steel plate obtained was nearly 100%,and there is no deformation,surface cracks,and big wave and micro-defects.Therefore,the protective problems of the double vertical explosive welding can be solved effectively by the protective structure.
基金Project(50678052) supported by the National Natural Science Foundation of China
文摘In order to establish the baseline finite element model for structural health monitoring,a new method of model updating was proposed after analyzing the uncertainties of measured data and the error of finite element model.In the new method,the finite element model was replaced by the multi-output support vector regression machine(MSVR).The interval variables of the measured frequency were sampled by Latin hypercube sampling method.The samples of frequency were regarded as the inputs of the trained MSVR.The outputs of MSVR were the target values of design parameters.The steel structure of National Aquatic Center for Beijing Olympic Games was introduced as a case for finite element model updating.The results show that the proposed method can avoid solving the problem of complicated calculation.Both the estimated values and associated uncertainties of the structure parameters can be obtained by the method.The static and dynamic characteristics of the updated finite element model are in good agreement with the measured data.
基金funded by the National Science and Technology Support Program(2011BAK12B00)the International Cooperation Project of the Department of Science and Technology of Sichuan Province(Grant No.2009HH0005).
文摘A herringbone water-sediment separation structure(hereinafter referred to as "herringbone structure") has been shown to be effective in separating coarse inorganic debris; however, less is known regarding the large wood(LW) filtration effect in this structure. This paper presents preliminary research on the wood filtration effect of the herringbone structure based on physical model tests.The results show that the herringbone structure exhibited effective performance in large wood size segregation, with a 100% component filtration rate for LW that diameter(D) larger than ribbed beam opening width(a). The total filtration rate also exceeded 80% when the Fraud number(Fr) is larger than 2.64 and increased with the increase of Fr. After exceeding Frmax, total filtration rate would be decreased due to overflow. Beside flow condition,structure parameters influence significantly on LW filtration rate. We attempt to explain the filtration process via particle contact trajectory and particle movement trajectory. The inclined angle of ribbed beam(γ) contributed the most variation to the filtration rate via influencing the coincidence with particle contact trajectory and particle movement trajectory. The high sensitivity coefficient of ribbed beam(θ) under relatively low Fr conditions implies remarkable influences on LW filtration effects by causing clogging problem. The ribbed beam opening width(a) together with LW diameter(D) influenced the size segregation performance.
文摘The dynamic characteristics of the large scale coherent structures in a forced free shear layer are experi- mentally studied by means of flow visualization. The quantitative measurements are acquired by the use of a LDV. It is shown that the development of the coherent structures can be greatly influenced by upstream artificial perturbations and as a result the mixing in the layer can be controlled. Like vortex merging, vortex splitting is also a common evolu- tion pattern in the development of the coherent structures.
基金supported by the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China[grant numbers 51704301]Foundation Strengthening Project of China[grant numbers 2019-JCJQ-JJ-024].
文摘Gas explosion is a process involving complex hydrodynamics and chemical reactions.In order to investigate the interaction between the flame behavior and the dynamic overpressure resulting from the explosion of a premixed gasoline-air mixture in a confined space,a large eddy simulation(LES)strategy coupled with sub-grid combustion model has been implemented.The considered confined space consists of a long duct and four branches symmetrically distributed on both sides of the long duct.Comparisons between the simulated and experimental results have been considered with regard to the flame structure,flame speed and overpressure characteristics.It is shown that the explosion process can qualitatively be reproduced by the numerical simulation.Due to the branch structure,vortices are generated near the joint of the branch and long duct.Vortices rotate in opposite directions in the different branches.When the flame propagates into the branch,the flame front is influenced by the flow field structure and becomes more and more distorted.The overpressure displays a similar behavior in the two branches which have a different distance from the ignition point.It is finally shown that the overpressure change law can directly be put in relation with the shape of flame front.
基金Project(51174192)supported by the National Natural Science Foundation of ChinaProject(BRA2010024)supported by "333" Training Foundation of Jiangsu Province,China+2 种基金Projects(2011QNB03,2014ZDPY21,2014QNB30)supported by the Fundamental Research Funds for the Central Universities,ChinaProject Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,ChinaProject(2015M581896)supported by China Postdoctoral Science Foundation
文摘The mining space of large mining height coal face is large,the range of movement and caving of rock strata is large and the stability of supports at coal face is low and damage rate of supports is high,which significantly affects the safe and efficient production of coal mines.By similar simulation experiment and theoretical analysis,the mode of fractured roofing structure of large mining height coal face and the method of determination of reasonable support resistance of the support was evaluated.Analysis shows that the structural mode of "combined cantilever beam – non-hinged roofing – hinged roofing" of the large mining height coal face appears at the roofing of large mining height coal face.The supporting factor of caved gangue at the gob is introduced,the calculating equations of the fractured step distance of roofing were derived and conventional calculating method of caved height of roofing was corrected and the method of determination of the length and height of each structural area of the roofing was provided.With reference to the excavating conditions at Jinhuagong coal mine in Datong minefield,the dimensions of structural areas of the roofing of the coal face were determined and analyzed,and reasonable support resistance of the height coal face was acquired.By selecting Model ZZ13000/28/60 support and with procedures of advanced pre-cracking blasting,the safe production of large mining height coal face was assured.
基金Foundation item: Supported by the National Natural Science Foundation of China (51309123), National Key Basic Research and Development Plan (973 Plan, 2013CB036104), Jiangsu Province Natural Science Research Projects in Colleges and Universities (13KJB570002), Open Foundation of State Key Laboratory of Ocean Engineering (1407), "Qing Lan Project" of Colleges and Universities in Jiangsu Province, Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
文摘Loads generated after an air crash, ship collision, and other accidents may destroy very large floating structures (VLFSs) and create additional connector loads. In this study, the combined effects of ship collision and wave loads are considered to establish motion differential equations for a multi-body VLFS. A time domain calculation method is proposed to calculate the connector load of the VLFS in waves. The Longuet-Higgins model is employed to simulate the stochastic wave load. Fluid force and hydrodynamic coefficient are obtained with DNV Sesam software. The motion differential equation is calculated by applying the time domain method when the frequency domain hydrodynamic coefficient is converted into the memory function of the motion differential equation of the time domain. As a result of the combined action of wave and impact loads, high-frequency oscillation is observed in the time history curve of the connector load. At wave directions of 0° and 75°, the regularities of the time history curves of the connector loads in different directions are similar and the connector loads of C1 and C2 in the X direction are the largest. The oscillation load is observed in the connector in the Y direction at a wave direction of 75° and not at 0° This paper presents a time domain calculation method of connector load to provide a certain reference function for the future development of Chinese VLFS
基金supported by the National Key Research and Development Project of China (grant 2016YFC0600302)the National Natural Science Foundation of China (grant 41774100)National Basic Research Program of China (973 Program, grant 2011CB808904)
文摘The Emeishan large igneous province(hereafter named by its acronym ELIP) is the first accepted large igneous region in China.The current study tries to reconstruct the density structure of the crust in this region. For this purpose, we conducted the gravity survey along an 800-km-long profile, which stretched laterally along the latitude 27°N from Lijiang(Yunnan province) to Guiyang(Guizhou province). The fieldwork included 338 gravity measurements distributed from the inner zone to the outer zone of the mantle plume head.After a series of gravity reductions, we calculated the Bouguer gravity anomaly and then constructed the density model for ELIP by iterative forward modeling from an initial density model tightly constrained by wide-angle seismic reflection data. The topography of the Moho, here physically interpreted as a density discontinuity of ~0.4 g·cm^(–3), gradually rises from the inner zone(~50 km deep) to the outer zone(~40 km), describes a thicker crust in the inner zone than in any other segment of the profile and largely reproduces the shape of the Bouguer gravity anomaly curve. Both the Bouguer gravity and the density structure show significant differences with respect to the inner zone and the other two zones of ELIP according to the commonly accepted partition of the Emeishan area. A thicker and denser middle-lower crust seems to be the main feature of the western section of the profile, which is likely related to its mafic magmatic composition due to magmatic underplating of the Permian mantle plume.
基金National Natural Science Foundation of China(11290153)。
文摘The actuator and sensor placement problem for active vibration control of large cable net structures is investigated in this paper.Since the structures exhibit closely spaced modes in the range of low frequencies,the number of modes to be considered is quite large after modal truncation,while only a limited number of actuators and sensors are to be placed.This makes it hard to determine the actuator and sensor locations with the existing placement methods in the literature such as the methods based on the controllability/observability grammian.To deal with this issue,an actuator and sensor placement method based on singular value decompositions(SVD)of the input and output matrices is proposed,which guarantees the modal controllability and observability of the system.The effectiveness of the SVD based method is verified through numerical simulations in which comparisons are conducted between randomly-chosen locations and the optimal ones obtained by a genetic algorithm.
文摘The response of dynamic wave pressures on structures would be more complicated and bring about new phenomena under the dynamic interaction between soil and structure. In order to better understand the response characteristics on deeply embedded large cylindrical structures under random waves, and accordingly to offer valuable findings for engineering, the authors designed wave flume experiments to investigate comparatively dynamic wave pressures on a single and on continuous cylinders with two different embedment depths in response to two wave spectra.The time histories of the water surface elevation and the corresponding dynamic wave pressures exerted on the cylinder were analyzed in the frequency domain. By calculating the transfer function and spectral density for dynamic wave pressures along the height and around the circumference of the cylinder, experimental results of the single cylinder were compared with the theoretical results based on the linear diffraction theory, and detailed comparisons were also carried out between the single and continuous cylinders. Some new findings and the corresponding analysis are reported in present paper. The investigation on continuous cylinders will be used in particular for reference in engineering applications because information is scarce on studying such kind of problem both analytically and experimentally.
文摘A method of coupled BEM-FEM analysis for the elastic spatial structure system is presented. It can be applied to the calculation of the stress and deformation of the large-diamater cylinder structure system and it is suitable for symmetric or non-symmetric structures under the distributed or concentrated load. Numerical examples show that the proposed method and computer program BEFEM are quite efficient in the analysis of the large-diameter cylinder structure problems in ocean engineering.
文摘An approach to sequence planning for on-orbit assembly of large space truss structures in a multirobot environment is presented. A hierarchical representation of large space truss structures at the structural volume element level and strut level is adopted. The representation of connectivity matrix and directed graph is respectively presented at the strut level and SVE level. The multirobot environment that consists of autonomous space robots and struts is supposed. Then the multirobot serial assembly strategy,assembly states,assembly tasks and assembly sequences are described. The assembly sequence planning algorithms at the strut level and SVE level are respectively discussed. The results of the simulations show that this approach is feasible and efficient. Two extensions of this approach include more accurate assessment of the efficiency representation and improvements in planning algorithm. In the future,the assembly sequence planning of more large space truss structures and complex multirobot environments and assembly tasks will be considered.
文摘Hydrogen gas sensor device with simple planar structure based on p^+ silicon substrate with n-type epi-layer was fabricated only by using a lift-off technique of an evaporated metal film.The device consists of Ohmic source and drain electrodes and platinum Schottky gate electrode.This sensor device has a little similar property as FET.Current-voltage characteristics between the source and drain of the device are sensitive to hydrogen gas.The voltage difference between in hydrogen ambient and oxygen ambient is about 2.3 volts for a constant current of 0.9 mA.The device can detect 0.4% hydrogen gas in air.Based on oxidation reaction of hydrogen on the surface of the platinum gate,hydrogen sensitivity of the device changes by the coexisting oxygen concentration.Electrons flow in the buried channel formed between the gate electrode and the p^+n junction.It was confirmed that the gate bias influences the properties.The current-voltage property changes also depending on the wiring method.
文摘The decentralized stabilization of continuous and discrete linear large scale systems with symmetric circulant structure was studied.A few sufficient conditions on decentralized stabilization of such systems were proposed.For the continuous systems,by introducing a concept called the magnitude of interconnected structure,a very important property that the decentralized stabilization of such systems is fully determined by the structure of each isolated subsystem that is obtained when the magnitude of interconnected structure of the overall system is given.So the decentralized stabilization of such systems can be got by only appropriately designing or modifying the structure of each isolated subsystem,no matter how complicated the interconnected structure of the overall system is.A algorithm for obtaining decentralized state feedback to stabilize the overall system is given.The discrete systems were also discussed.The results show that there is a great dfference on decentralized stabilization between continuous case and discrete case.