期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Large deflection deformation behavior of a Zr-based bulk metallic glass for compliant spinal fixation application
1
作者 Diao-Feng Li Chun-Guang Bai +3 位作者 Zhi-Qiang Zhang Hui-Bo Zhang Nan Li Jian Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS 2024年第6期86-99,共14页
A novel compliant spinal fixation designed based on the concept of compliant mechanisms can reduce the stress-shielding effect and adjacent segment degeneration(ASD)effectively,but propose higher requirements for the ... A novel compliant spinal fixation designed based on the concept of compliant mechanisms can reduce the stress-shielding effect and adjacent segment degeneration(ASD)effectively,but propose higher requirements for the properties of the used materials.Bulk metallic glasses(BMGs),as a kind of young biomaterials,exhibiting excellent comprehensive properties,which are attractive for compliant spinal fixation.Here,according to the practical service condition of the basic elements in compliant spinal fixation,large deflection deformation behaviors of Zr_(61)Ti_(2)Cu_(25)Al_(12)(at.%,ZT1)BMG beam,including elastic,yielding and plastic were investigated systematically.It was shown that the theoretical nonlinear analytical solution curve as the benchmark not only with the capacity to predict the nonlinear load-deflection relation within the elastic deformation regime,but also assists to capture the yielding event roughly,which can be used as a powerful design tool for engineers.To capture the beginning of the yielding event exactly,bending proof strength(σ_(p),0.05%)accompanied with tiny permanent strain of 0.05% was proposed and determined for BMGs in biomedical implant applications,which is of significance for setting the allowable operating limits of the basic flexible elements.By approach of interrupted loading-unloading cycles,plastic deformation driven by the bending moment can be classified into two typical stages:the initial stage which mainly characterized by the nucleation and intense interaction of abundant shear bands when the plastic strain below the critical value,and the second stage which dominated by the progressive propagation of shear bands and coupled with the emergence of shear offsets on tensile side.The plasticity of BMG beam structures depends on the BMG's inherent plastic zone size(rp).When the half beam thickness less than that of the rp,the plastic deformation of BMGs will behave in a stable manner,which can be acted as the margin of safety effectively. 展开更多
关键词 Metallic glasses Biomaterials Compliant spinal fixation large deflection deformation Plastic deformation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部