期刊文献+
共找到823篇文章
< 1 2 42 >
每页显示 20 50 100
Case study on the mechanics of NPR anchor cable compensation for large deformation tunnel in soft rock in the Transverse Mountain area,China
1
作者 LI Yong ZHENG Jing +3 位作者 HUO Shu-sen WANG Feng-nian HE Man-chao TAO Zhi-gang 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2054-2069,共16页
A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced duri... A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced during the tunnel construction.To mitigate this problem,a support system was designed incorporating negative Poisson ratio(NPR)anchor cables with negative Poisson ratio effect.Physical model experiments,field experiments,and numerical simulation experiments were conducted to investigate the compensation mechanical behavior of NPR anchor cables.The large deformations of soft rocks in the Daliangshan Tunnel are caused by a high ground stress,a high degree of joint fracture development,and a high degree of surrounding rock fragmentation.A compensation mechanics support system combining long and short NPR anchor cables was suggested to provide sufficient counter-support force(approximately 350 kN)for the surrounding rock inside the tunnel.Comparing the NPR anchor cable support system with the original support system used in the Daliangshan tunnel showed that an NPR anchor cable support system,combining cables of 6.3 m and 10.3 m in length,effectively prevented convergence of surrounding rock deformation,and the integrated settlement convergence value remained below 300 mm.This study provides an effective scientific basis for resolving large deformation problems in deeply buried soft rocks in western transverse mountain areas. 展开更多
关键词 soft rock large deformation NPR anchor cable physical model numerical simulation compensation mechanics
下载PDF
Compensation excavation method control for large deformation disaster of mountain soft rock tunnel 被引量:20
2
作者 Manchao He Qiru Sui +2 位作者 Mengnan Li Zhijiao Wang Zhigang Tao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第5期951-963,共13页
In recent years,the mine tunneling method and the new Austrian tunneling method have been considered the main theories of tunneling approaches in China.It is difficult for the traditional technique to overcome the lar... In recent years,the mine tunneling method and the new Austrian tunneling method have been considered the main theories of tunneling approaches in China.It is difficult for the traditional technique to overcome the large deformation problems imposed by complex geological conditions of mountain soft rock tunneling.Hence,the compensation excavation method has been proposed to solve this issue under the consideration that all damage in tunneling originates from the excavation.It uses supportive strategies to counteract the excavation effects successfully.This paper provides an overview of the fundamental ideas of the compensation excavation method,methodologies,and field applications.The scientific validity and feasibility of the compensation excavation method were investigated through the practical engineering study of the Muzhailing and Changning tunnels. 展开更多
关键词 tunnel engineering Excavation method soft rock large deformation Compensation excavation method
下载PDF
Numerical modeling of large deformation and nonlinear frictional contact of excavation boundary of deep soft rock tunnel 被引量:6
3
作者 Xin Chen Hongyun Guo +2 位作者 Pei Zhao Xi Peng Shizhi Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第S1期421-428,共8页
Roadways excavated in soft rocks at great depth are difficult to be maintained due to large deformation of surrounding rocks, which greatly influences the safety and efficiency of deep resources exploitation. During t... Roadways excavated in soft rocks at great depth are difficult to be maintained due to large deformation of surrounding rocks, which greatly influences the safety and efficiency of deep resources exploitation. During the excavation process of a deep soft rock tunnel, the rock wall may be compacted due to large deformation. In this paper, the technique to address this problem by a two-dimensional (2D) finite element software, large deformation engineering analyses software (LDEAS 1.0), is provided. By using the Lagrange multiplier method, the kinematic constraint of non-penetrating condition and static constraint of Coulomb friction are introduced to the governing equations in the form of incremental displacement. The numerical example demonstrates the efficiency of this technology. Deformations of a transportation tunnel in inclined soft rock strata at the depth of 1 000 m in Qishan coal mine and a tunnel excavated to three different depths are analyzed by two models, i.e. the additive decomposition model and polar decomposition model. It can be found that the deformation of the transportation tunnel is asymmetrical due to the inclination of rock strata. For extremely soft rock, large deformation can converge only for the additive decomposition model. The deformation of surrounding rocks increases with the increase in the tunnel depth for both models. At the same depth, the deformation calculated by the additive decomposition model is smaller than that by the polar decomposition model. 展开更多
关键词 deep soft rock tunnel large deformation contact problem Lagrange multiplier method
下载PDF
Deformation mechanism of rock mass and prestressed anchor cable support technology of Haidong soft rock tunnel
4
作者 LEI Xiaotian TAO Zhigang +3 位作者 LIU Keyuan YANG Hong CAI Mingjiu FAN Xiaowei 《Journal of Mountain Science》 SCIE CSCD 2024年第12期4299-4322,共24页
The Haidong Tunnel is one of the four soft rock tunnels of the Central Yunnan Water Diversion Project(CYWDP),where large deformation hazards of soft rock occur frequently,which seriously affect construction safety.The... The Haidong Tunnel is one of the four soft rock tunnels of the Central Yunnan Water Diversion Project(CYWDP),where large deformation hazards of soft rock occur frequently,which seriously affect construction safety.The effect of highly prestressed anchor cable support was studied based on the active support test in the No.3 branch tunnel of Haidong Tunnel.Firstly,the geological conditions and failure causes were analyzed on the basis of the results of geological survey,in-situ test,and rock laboratory test.Then,the Mohr circle form of the highly prestressed anchor cable active support theory for the support of bedded rock mass was given in combination with the excavation compensation method.It is considered that the prestress active compensation value required for the bedded rock mass is larger than that for the homogeneous rock mass.The deformations of rock mass under both passive and active supports were analyzed by numerical simulations.Furthermore,the'pressure bubble'mechanical model for anchor cable support of bedded rock mass in Haidong Tunnel is given.Field monitoring results show that the highly prestressed anchor cable support can control rock mass deformation well,with a maximum deformation of about 200 mm.The prestressed anchor cable is effective in the bedded stratum,which makes the stress of rock mass uniform and reduces the risk of failure of steel arches due to local bias.Meanwhile,the expansion of plastic zone was efficiently controlled,which is of positive significance for the overall stability of rock mass. 展开更多
关键词 Central Yunnan Water Diversion Project large deformation of soft rock Prestressed anchor cable Active support 'Pressure bubble'mechanical model
下载PDF
Time-dependent squeezing deformation mechanism of tunnels in layered soft-rock stratum under high geo-stress 被引量:5
5
作者 CHEN Zi-quan HE Chuan +1 位作者 WANG Jun MA Chun-chi 《Journal of Mountain Science》 SCIE CSCD 2021年第5期1371-1390,共20页
Large squeezing deformation of layered soft rock tunnel under high geo-stress has a significant time-dependent deformation behavior.In this paper,we studied the deformation mechanism during the construction period of ... Large squeezing deformation of layered soft rock tunnel under high geo-stress has a significant time-dependent deformation behavior.In this paper,we studied the deformation mechanism during the construction period of deep-buried softrock tunnel by means of a combination of field observations and a numerical method.First,a new classification criterion for large deformations based on the power exponent variation law between the deformation and the strength-stress ratio is proposed.Then,the initial damage tensor reflecting the bedding plane(joint)distribution and an equivalent damage evolution equation derived from the viscoplastic strain are introduced based on the geometric research method,i.e.,a new rheological damage model(RDL model)of layered soft rock is established consisting of elastic,viscous,viscoelastic,viscoplastic and plastic elements.A field test was conducted on the Maoxian tunnel in Sichuan province,southwestern China,which is in broken phyllite(layered soft rock)under high geo-stress.The tunnel has experienced large deformation due to serious squeezing pressure,thus we adopted double primary support method to overcome the supporting structure failure problems.The rheological parameters of phyllite in the Maoxian tunnel were recognized by using SA-PSO optimization,and the RDL model does a good job in describing the time-dependent deformation behavior of a layered soft-rock tunnel under high geo-stress.Thus,the RDL model was used to investigate the supporting effect and bearing mechanism of the double primary support method.Compared with the single primary support method,the surrounding rock pressure,secondary lining force,surrounding rock deformation,and the depth of the damage to the rock mass was reduced by 40%-60%after the double primary support method was used. 展开更多
关键词 deformation mechanism Layered soft rock tunnel High geostress large squeezing deformation Rheological damage model
下载PDF
Failure mechanism and safety control technology of a composite strata roadway in deep and soft rock masses:a case study
6
作者 ZHAO Chengwei ZHOU Hui +3 位作者 SUN Xiaoming ZHANG Yong MIAO Chengyu WANG Jian 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2427-2444,共18页
The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challe... The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challenges of a composite strata roadway in deep and soft rock masses,a numerical model of 3DEC tetrahedral blocks was established based on the method of rock quality designation(RQD).The results showed that original support cannot prevent asymmetric failure and large deformation due to the adverse geological environment and unsuitable support design.According to the failure characteristics,a coupling support of“NPR bolt/cable+mesh+shotcrete+steel pipe”was proposed to control the stability of the surrounding rock.The excellent mechanical properties of large deformation(approximately 400 mm)and high constant resistance force(bolt with 180 k N;cable with 350 k N)were evaluated by the tensile tests.The numerical results showed that the maximum deformation was minimized to 243 mm,and the bearing capacity of the surrounding rock of the roadway was enhanced.The field test results showed that the maximum deformation of the surrounding rock was 210 mm,and the forces of the NPR bolt and cable were stable at approximately 180 k N and 350 k N,respectively.This demonstrated the effectiveness of the coupling support with the NPR bolt and cable,which could be a guiding significance for the safety control of large deformation and failure in deep composite soft rock roadways. 展开更多
关键词 3DEC Composite strata roadway soft rock NPR bolt and cable Asymmetric large deformation
下载PDF
NEW THEORY IN TUNNEL STABLILITY CONTROL OF SOFT ROCK──MECHANICS OF SOFT ROCK ENGINEERING 被引量:7
7
作者 何满朝 《Journal of Coal Science & Engineering(China)》 1996年第1期39-44,共6页
Tunnel stability control is a world-wide difficult problem. For the sake of solving it,the new theory of soft rock engineering mechanics has been estabilished. Some key points,such as the definition and classification... Tunnel stability control is a world-wide difficult problem. For the sake of solving it,the new theory of soft rock engineering mechanics has been estabilished. Some key points,such as the definition and classification of soft rock, mechanical deformation mechanism of a soft rock tunnel, the critical support technique of soft rock tunnel and the new theory of the soft rock tunnel stability control are proposed in this paper. 展开更多
关键词 tunnel of soft rock mechanical mechanism of deformation complex type transforming technique
下载PDF
Analysis of mechanical behavior of soft rocks and stability control in deep tunnels 被引量:6
8
作者 Hui Zhou Chuanqing Zhang +2 位作者 Zhen Li Dawei Hu Jing Hou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第3期219-226,共8页
Due to the weakness in mechanical properties of chlorite schist and the high in situ stress in Jinping II hydropower station, the rock mass surrounding the diversion tunnels located in chlorite schist was observed wit... Due to the weakness in mechanical properties of chlorite schist and the high in situ stress in Jinping II hydropower station, the rock mass surrounding the diversion tunnels located in chlorite schist was observed with extremely large deformations. This may significantly increase the risk of tunnel instability during excavation. In order to assess the stability of the diversion tunnels laboratory tests were carried out in association with the petrophysical properties, mechanical behaviors and waterlweakening properties of chlorite schist. The continuous deformation of surrounding rock mass, the destruction of the support structure and a large-scale collapse induced by the weak chlorite schist and high in situ stress were analyzed. The distributions of compressive deformation in the excavation zone with large deformations were also studied. In this regard, two reinforcement schemes for the excavation of diversion tunnel bottom section were proposed accordingly. This study could offer theoretical basis for deed tunnel construction in similar geological condition~ 展开更多
关键词 Deep tunnel soft rock Water-weakening effect large deformation Stability
下载PDF
Optimization of construction scheme and supporting technology for HJS soft rock tunnel 被引量:8
9
作者 Wang Shuren Li Chunliu +1 位作者 Liu Zhaowei Fang Junbo 《International Journal of Mining Science and Technology》 SCIE EI 2014年第6期847-852,共6页
For a soft rock tunnel under high stress in jointed and swell soft rock (HJS), two construction schemes pilot-tunneling enlarging excavation and step-by-step excavation were optimized using FLAC20, and the deformati... For a soft rock tunnel under high stress in jointed and swell soft rock (HJS), two construction schemes pilot-tunneling enlarging excavation and step-by-step excavation were optimized using FLAC20, and the deformation effects of the two construction schemes were verified by field tests. Based on engineer- ing geological investigation and mechanical analysis of large deformations, the complex deformation mechanisms of stress expansion and structural deformation of the soft rock tunnel were confirmed, and support countermeasures from the complex deformation mechanism converted to a single type were proposed, and the support parameters were optimized by field tests. These technologies were proved by engineering practice, which produced significant technical and economic benefits. 展开更多
关键词 soft rock tunnel High stress deformation mechanism Support parameters Optimization
下载PDF
Research on sustenance of soft rock tunnel in Hongmiao Mine of Pingzhuang Mine Area 被引量:1
10
作者 孔祥义 张宝安 《Journal of Coal Science & Engineering(China)》 2008年第4期597-599,共3页
The return airway tunnel of bank 6 is an important tunnel for air return and auxiliary transportation.While under construction,the tunnel was seriously deformed, and the bottom was heavily squeezed.When completed,the ... The return airway tunnel of bank 6 is an important tunnel for air return and auxiliary transportation.While under construction,the tunnel was seriously deformed, and the bottom was heavily squeezed.When completed,the bottom was smoothed out several times and a lot of maintenance were done.But about half year later,the tunnel collapsed.To counter the problems mentioned above,we systematically expounded our ideas and designed for solving the problem of the sustenance of the return airway tunnel of section 6. 展开更多
关键词 soft rock mine sustenance of tunnel bottom squeezing deforming
下载PDF
Study on the Deformation Mechanism of a Soft Rock Tunnel
11
作者 Jianhui Yang Kai Shen +2 位作者 Shoudong Pan Shuren Wang Zhengsheng Zou 《Fluid Dynamics & Materials Processing》 EI 2022年第2期243-255,共13页
The large deformation of soft rock tunnel is one of the key problems to be overcome in the tunnel construction stage.In the present study,the deformation mechanism of a representative tunnel and some related counterme... The large deformation of soft rock tunnel is one of the key problems to be overcome in the tunnel construction stage.In the present study,the deformation mechanism of a representative tunnel and some related countermeasures are investigated using field tests and engineering geological analysis.Owing to the scarce performances of methods based on other criteria such as small pipe spacing,anchor bolt length and steel frame spacing,a new support scheme is implemented and optimized.Results show that shear failure and bedding sliding are produced under high horizontal stress conditions.The low strength of the surrounding rock results in the uneven convergence of both sides of the tunnel.With the aforementioned new support scheme,however,most of such problems can be mitigated leading to good stability properties and ensuing economic advantages. 展开更多
关键词 soft rock tunnel high stress deformation mechanism supporting countermeasure
下载PDF
Physical model test and numerical simulation on the failure mechanism of the roadway in layered soft rocks 被引量:14
12
作者 Xiaoming Sun Chengwei Zhao +3 位作者 Yong Zhang Feng Chen Shangkun Zhang Kaiyuan Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第2期291-302,共12页
To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employ... To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employed to capture thermal responses and deformation.The model results showed that layered soft roadway suffered from large deformation.A three-dimensional distinct element code(3 DEC)model with tetrahedral blocks was built to capture the characteristics of roadway deformation,stress,and cracks.The results showed two failure patterns,layer bending fracture and layer slipping after excavation.The layer bending fracture occurred at positions where the normal direction of layers pointed to the inside of the roadway and the layer slipping occurred in the ribs.Six schemes were proposed to investigate the effects of layered soft rocks.The results showed that the deformation of ribs was obviously larger than that of the roof and floor when the roadway passed through three types of strata.When the roadway was completely in a coal seam,the change of deformation in ribs was not obvious,while the deformation in the roof and floor increased obviously.These results can provide guidance for excavation and support design of roadways in layered soft rocks. 展开更多
关键词 Failure mechanism Physical model test 3DEC Layered soft rocks large deformation
下载PDF
Lateral damage mechanism of the double-track tunnel in the mountainous layered soft rock and NPR anchor cable control 被引量:3
13
作者 Qiru Sui Manchao He +4 位作者 Tingting Shi Shihui Pang Jinyang Xiang Zhigang Tao Dingjun Qu 《Underground Space》 SCIE EI CSCD 2023年第5期31-43,共13页
Due to complex geological formations,lateral damage often occurs during excavation in mountainous layered soft rock double-track tunnels.This paper discusses the stresses and the damage characteristics of the surround... Due to complex geological formations,lateral damage often occurs during excavation in mountainous layered soft rock double-track tunnels.This paper discusses the stresses and the damage characteristics of the surrounding rock under overload in a mountainous layered soft rock double-track tunnel through indoor model experiments to provide a basis for the effective control of lateral damage.The experiments show that the conventional support method cannot effectively control the lateral damage due to interlayer sliding.Therefore,the negative Poisson’s ratio(NPR)anchor/cable control method is proposed.And the scientificity and feasibility of the NPR anchor/cable control technology are proved by the field application and monitoring data of the Minxian Tunnel and Changning Tunnel.It is further demonstrated that high preload is the most effective way to control the lateral damage in layered soft rock tunnels. 展开更多
关键词 tunnel engineering DOUBLE-TRACK soft rock large deformation Lateral damage
原文传递
Modified ground response curve(GRC)in strain-softening rock mass based on the generalized Zhang-Zhu strength criterion considering over-excavation 被引量:5
14
作者 Chen Xu Caichu Xia Changling Han 《Underground Space》 SCIE EI 2021年第5期585-602,共18页
The ground response curve(GRC)depicts the relationship between support reaction force and ground displacement,which improves the understanding of ground-support interaction and provides important references to the tun... The ground response curve(GRC)depicts the relationship between support reaction force and ground displacement,which improves the understanding of ground-support interaction and provides important references to the tunnel design.However,it is difficult to anticipate the tunneling-induced large deformation with sufficient reliability in soft rock with high geostress since the small strain theory is not applicable.When large deformation occurs,the tunnel needs to be over-excavated.Thus,the GRC should be modified considering the enlarged excavation radius since the actual excavation radius is usually greater than the designed one.To overcome the shortcomings of small strain theory in recognizing ground-support interaction under large deformation circumstances,a new large strain numerical approach for modifying the GRC was proposed considering over-excavation in strain-softening rock masses based on the generalized Zhang-Zhu strength criterion.A case study was conducted based on the Lianchengshan tunnel in China.The modified GRC was employed to investigate the ground-support behavior for different support schemes and to explore the applicability of the stress release measures.Combined with field tests,the proposed approach was validated.By comparing with GRCs proposed by previous work,the present modified GRC was proved to be superior to others.Parametric studies were conducted and it is found that over-excavation,for example,reserving a very large clearance between the surrounding rock and the support,is necessary to reduce ground pressure to a large extent.The yielding supports which can provide high support pressure during the process of deformation are highly recommended when tunneling in high geostress environment.However,if the initial geostress is not very high,it is not necessary to pursue unwarranted overexcavation since the ground pressure applied on the support is mainly the loosening stress when the deformation is large.Ample support stiffness should be provided in the process of deformation to prevent uncontrolled large deformation of surrounding rock. 展开更多
关键词 Ground response curve large strain Over-excavation STRAin-softENinG soft rock tunnel
原文传递
Failure responses of rock tunnel faces during excavation through the fault-fracture zone 被引量:3
15
作者 Zeyu Li Hongwei Huang +1 位作者 Mingliang Zhou Dongming Zhang 《Underground Space》 SCIE EI CSCD 2023年第3期166-181,共16页
It is essential to cast light on the construction risks in tunnel excavations through the fault-fracture zone(FFZ).This study adopts the material point method(MPM)to simulate the failure responses of a rock tunnel fac... It is essential to cast light on the construction risks in tunnel excavations through the fault-fracture zone(FFZ).This study adopts the material point method(MPM)to simulate the failure responses of a rock tunnel face during excavation through the FFZ.A numerical study was conducted to compare a physical model test and validate the feasibility of using the MPM in simulating tunnel face failure.One hundred ninety numerical simulation cases were constructed to represent a rock tunnel excavation project with different site con-figurations.The simulation results suggest that the cohesion and the friction angle significantly influence failure responses.The tunnel cover depth can magnify the failure responses,and the FFZ thickness significantly affects the mobilized rock mass volume when the FFZ consists of a weak rock mass.The numerical simulation results suggest three deformation patterns:face bulge,partial failure,and slide collapse.The failure responses can be characterized by stress arch,slip surface,angle of reposing,and influence range.The insights suggested by the face failure responses during excavation through the FFZ can aid field engineers in determining the scope of possible damage,and in establishing emergency measures to minimize losses if such failure occurs. 展开更多
关键词 tunnel face failure rock tunnel excavation large deformation Fracture fault zone Material point method
原文传递
滇中芹河隧洞软岩破碎段围岩大变形与支护结构相互作用研究 被引量:3
16
作者 付敬 吴帆 +1 位作者 张雨霆 覃然 《长江科学院院报》 CSCD 北大核心 2024年第3期171-177,185,共8页
软岩大变形是滇中引水工程建设中较为突出的工程地质问题之一,以大楚段芹河隧洞4#支洞为研究对象开展软岩大变形特征及承载结构受力研究。4#支洞在施工过程中发生影响洞室稳定的问题,洞周围岩大变形不同程度侵限,导致钢拱架扭曲断裂、... 软岩大变形是滇中引水工程建设中较为突出的工程地质问题之一,以大楚段芹河隧洞4#支洞为研究对象开展软岩大变形特征及承载结构受力研究。4#支洞在施工过程中发生影响洞室稳定的问题,洞周围岩大变形不同程度侵限,导致钢拱架扭曲断裂、喷混凝土掉落现象时有发生。为了充分认识隧洞变形特征、破坏模式及成因机制,结合工程地质勘察、现场监控量测、数值反演及施工模拟分析等手段和方法对其进行综合研究。研究成果表明:破碎软岩洞段施工期围岩监测变形量大、变形速率较快,变形具有明显的时效性;围岩完整性差,洞周变形差异大;围岩以剪切破坏为主;围岩时效变形对支护结构受力影响大,部分承载结构受力超限,导致局部结构破坏。可见,针对破碎的软岩隧洞施工,需要采取超前注浆、减少减小施工扰动、及时跟进初期支护、尽快封闭成环,加强施工期围岩变形监测,选取合理的衬砌支护时机,实时指导和优化隧洞支护结构施工设计。 展开更多
关键词 破碎软岩 大变形 支护结构 蠕变 拱架断裂
下载PDF
极高地应力软岩隧道非对称变形机理及支护优化研究 被引量:2
17
作者 陈志敏 赵吉万 +3 位作者 龚军 陈宇飞 李增印 孙胜旗 《防灾减灾工程学报》 CSCD 北大核心 2024年第1期109-119,共11页
针对极大断面公路隧道施工中出现的非对称大变形问题,考虑高地应力第一主应力与隧道轴线关系、层状软岩夹层与互层状态、掌子面软岩空间不对称、地下水等因素,基于对工程地质条件、围岩与支护结构失效及破坏特征的分析,结合岩样物理力... 针对极大断面公路隧道施工中出现的非对称大变形问题,考虑高地应力第一主应力与隧道轴线关系、层状软岩夹层与互层状态、掌子面软岩空间不对称、地下水等因素,基于对工程地质条件、围岩与支护结构失效及破坏特征的分析,结合岩样物理力学特性室内试验研究及地应力实测情况,探究了非对称大变形形成机理并提出针对性的支护结果优化方案。结果表明:高地应力层状软岩隧道围岩不对称变形是在岩层倾角α、最大水平主应力与隧道轴线夹角β和岩层夹角γ、围岩岩性和地下水综合作用下的大变形,围岩不对称部位由以上几种因素共同决定;当主应力σ1与隧道轴线既不垂直也不平行时,会产生挤压性偏压构造水平地应力,使隧道横断面侧向受力不对称,发生偏压性非对称大变形;通过改变锚杆的布设方式、提高超前注浆小导管的长度和刚度、喷射临时封闭、在防水板与喷射砼间增加高密度橡塑海绵板缓冲层等措施,可以有效的减少变形量,防止围岩因开挖扰动而松动和坍塌。 展开更多
关键词 极高地应力 软岩隧道 非对称变形 支护优化
下载PDF
施工期铁路隧道软岩大变形快速分级方法研究
18
作者 张广泽 贾哲强 +3 位作者 罗良成 王栋 任利 袁传保 《铁道工程学报》 EI CSCD 北大核心 2024年第2期20-25,共6页
研究目的:西南复杂艰险山区等典型构造活跃区的构造地质环境复杂,断裂、褶皱发育,构造应力显著,铁路隧道围岩大变形问题突出,随着构造活跃区铁路隧道工程日益增加,将面临更严峻的大变形问题。在隧道施工开挖过程中,快速判别可能发生的... 研究目的:西南复杂艰险山区等典型构造活跃区的构造地质环境复杂,断裂、褶皱发育,构造应力显著,铁路隧道围岩大变形问题突出,随着构造活跃区铁路隧道工程日益增加,将面临更严峻的大变形问题。在隧道施工开挖过程中,快速判别可能发生的大变形等级,有利于施工工法的调整和支护措施的制定。研究结论:(1)深入分析构造软岩大变形工程案例,以施工期掌子面开挖揭示围岩分级数据为基准,结合区域地应力、岩层厚度、岩性等大变形关键控制因素,快速判定大变形等级,提出了施工期铁路隧道围岩大变形快速分级方法,并结合典型工程案例对分级方法的有效性和准确性进行了验证;(2)本研究成果可应用于施工期间铁路隧道开挖围岩大变形的快速分级,适用于工程地质勘察领域。 展开更多
关键词 构造活跃区 铁路隧道 软岩大变形 快速分级
下载PDF
考虑湿度应力的深部软岩隧道大变形控制研究
19
作者 张建俊 王洋 +2 位作者 孙闯 裴文强 张馨 《地下空间与工程学报》 CSCD 北大核心 2024年第1期230-240,共11页
为探明深部高地应力软岩隧道大变形产生机理,制定适应大变形控制措施,以月直山隧道为工程依托,首先明确求解围岩形变压力与松动压力的Kastner与Caquot公式,基于岩体弹塑性力学与连续介质理论建立围岩湿度应力解析解,采用收敛-约束法绘制... 为探明深部高地应力软岩隧道大变形产生机理,制定适应大变形控制措施,以月直山隧道为工程依托,首先明确求解围岩形变压力与松动压力的Kastner与Caquot公式,基于岩体弹塑性力学与连续介质理论建立围岩湿度应力解析解,采用收敛-约束法绘制出3种围岩应力作用下围岩与初期支护特征曲线,分析断面变形过程中围岩与支护结构相互作用规律及3种应力占比演化规律。分别以混凝土与型钢钢架作为二衬支护结构对月直山隧道围岩稳定性进行计算分析,明确考虑湿度应力与松动压力条件下隧道二衬最优支护时机与支护参数,以支护结构安全系数FS评判出最优支护方案并对隧道软岩大变形进行治理。结果表明:当围岩径向位移达到550 mm时,仅考虑形变压力Pi时围岩对支护结构的压力P仅为0.813 MPa,考虑湿度应力Pw与松动压力Pa时P增大为1.372 MPa,湿度应力与松动应力总占比达40.7%,仅考虑形变压力而设计的支护结构不满足围岩稳定性要求;根据“卸压支护”理念,确定以“位移释放峰值upeak=0.325 m”与“间距d=0.7 m”作为增设第二层钢架的最佳支护时机与支护参数,现场二次钢架设置24天后使围岩变形收敛于50.8 mm,围岩大变形得到控制,研究成果可为今后相关隧道工程设计与施工提供参考。 展开更多
关键词 隧道工程 软岩大变形 湿度应力 收敛-约束法 支护优化
下载PDF
NPR锚索对跨断层软岩大变形隧道控制技术研究
20
作者 陶志刚 林伟军 +3 位作者 李勇 孙滢滢 熊弋文 陈明亮 《隧道建设(中英文)》 CSCD 北大核心 2024年第S01期113-123,共11页
为探究NPR锚索对东马场跨断层软岩大变形隧道控制效果,首先对NPR锚索进行静力拉伸试验,验证其恒阻大变形的能力和具有良好的抵御外力的效果;随后开展NPR锚索对东马场隧道围岩变形控制的三维物理模型试验。试验现象和数据表明:在开挖过程... 为探究NPR锚索对东马场跨断层软岩大变形隧道控制效果,首先对NPR锚索进行静力拉伸试验,验证其恒阻大变形的能力和具有良好的抵御外力的效果;随后开展NPR锚索对东马场隧道围岩变形控制的三维物理模型试验。试验现象和数据表明:在开挖过程中,隧道围岩也没有出现较大垮落和坍塌,NPR锚索对软岩隧道围岩有较好的支护效果。在加载完成后,NPR锚索对非断层处的隧道围岩最大位移约为14 mm,断层处的围岩最大位移约为21 mm,隧道区域所受应力分布的不规律性,导致隧道围岩出现挤压变形,位移曲线呈振荡状。在NPR锚索的支护下,围岩应力最大发生在左拱肩,围岩临空面3 cm处切应力最大(0.3 MPa),隧道未出现大规模的不对称破坏现象,隧道总体呈现出“小塌而不垮”,变形总体可控。 展开更多
关键词 断层隧道 软岩大变形 NPR锚索 物理模型试验
下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部