期刊文献+
共找到1,348篇文章
< 1 2 68 >
每页显示 20 50 100
Numerical Simulation of Surrounding Rock Deformation and Grouting Reinforcement of Cross-Fault Tunnel under Different Excavation Methods
1
作者 Duan Zhu Zhende Zhu +2 位作者 Cong Zhang LunDai Baotian Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2445-2470,共26页
Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability a... Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability and damageto the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcementtechnology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. Thisstudy utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support,and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite element numericalmethod. The study yielded the following research conclusions: The excavation conditions of the cross-fault tunnelarray were analyzed to determine the optimal construction method for excavation while controlling deformationand stress in the surrounding rock. The middle partition method (CD method) was found to be the most suitable.Additionally, the effects of advanced reinforcement grouting on the cross-fault fracture zone tunnel were studied,and the optimal combination of grouting reinforcement range (140°) and grouting thickness (1m) was determined.The stress and deformation data obtained fromon-site monitoring of the surrounding rock was slightly lower thanthe numerical simulation results. However, the change trend of both sets of data was found to be consistent. Theseresearch findings provide technical analysis and data support for the construction and design of cross-fault tunnels. 展开更多
关键词 Cross-fault tunnel finite element analysis excavation methods surrounding rock deformation grouting reinforcement
下载PDF
Prediction model of surrounding rock deformation in doublecontinuous-arch tunnel based on the ABC-WNN
2
作者 Yahui Zhang 《Railway Sciences》 2024年第6期717-730,共14页
Purpose–The wavelet neural network(WNN)has the drawbacks of slow convergence speed and easy falling into local optima in data prediction.Although the artificial bee colony(ABC)algorithm has strong global optimization... Purpose–The wavelet neural network(WNN)has the drawbacks of slow convergence speed and easy falling into local optima in data prediction.Although the artificial bee colony(ABC)algorithm has strong global optimization ability and fast convergence speed,it also has the drawbacks of slow speed while finding the optimal solution and weak optimization ability in the later stage.Design/methodology/approach–This article uses an ABC algorithm to optimize the WNN and establishes an ABC-WNN analysis model.Based on the example of the Jinan Yuhan underground tunnel project,the deformation of the surrounding rock of the double-arch tunnel crossing the fault fracture zone is predicted and analyzed,and the analysis results are compared with the actual detection amount.Findings–The comparison results show that the predicted values of the ABC-WNN model have a high degree of fitting with the actual engineering data,with a maximum relative error of only 4.73%.On this basis,the results show that the statistical features of ABC-WNN are the lowest,with the errors at 0.566 and 0.573,compared with the single back propagation(BP)neural network model and WNN model.Therefore,it can be derived that the ABC-WNN model has higher prediction accuracy,better computational stability and faster convergence speed for deformation.Originality/value–This article uses firstly the ABC-WNN for the deformation analysis of double-arch tunnels.This attempt laid the foundation for artificial intelligence prediction in deformation analysis of multiarch tunnels and small clearance tunnels.It can provide a new and effective way for deformation prediction in similar projects. 展开更多
关键词 Double arch tunnel deformation prediction Artificial bee colonies surrounding rock Wavelet neural network
下载PDF
Study on creep deformation and energy development of underground surrounding rock under four‐dimensional support
3
作者 Zhanguo Ma Junyu Sun +3 位作者 Peng Gong Pengfei Yan Nan Cui Ruichong Zhang 《Deep Underground Science and Engineering》 2024年第1期25-38,共14页
There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(here... There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(hereinafter 4D support),as a new support technology,can set the roadway surrounding rock under three‐dimensional pressure in the new balanced structure,and prevent instability of surrounding rock in underground engineering.However,the influence of roadway depth and creep deformation on the surrounding rock supported by 4D support is still unknown.This study investigated the influence of roadway depth and creep deformation time on the instability of surrounding rock by analyzing the energy development.The elastic strain energy was analyzed using the program redeveloped in FLAC3D.The numerical simulation results indicate that the combined support mode of 4D roof supports and conventional side supports is highly applicable to the stability control of surrounding rock with a roadway depth exceeding 520 m.With the increase of roadway depth,4D support can effectively restrain the area and depth of plastic deformation in the surrounding rock.Further,4D support limits the accumulation range and rate of elastic strain energy as the creep deformation time increases.4D support can effectively reduce the plastic deformation of roadway surrounding rock and maintain the stability for a long deformation period of 6 months.As confirmed by in situ monitoring results,4D support is more effective for the long‐term stability control of surrounding rock than conventional support. 展开更多
关键词 coal mines elastic strain energy four‐dimensional support large roadway depth long‐term stability control plastic deformation surrounding rock
下载PDF
Compensation excavation method control for large deformation disaster of mountain soft rock tunnel 被引量:18
4
作者 Manchao He Qiru Sui +2 位作者 Mengnan Li Zhijiao Wang Zhigang Tao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第5期951-963,共13页
In recent years,the mine tunneling method and the new Austrian tunneling method have been considered the main theories of tunneling approaches in China.It is difficult for the traditional technique to overcome the lar... In recent years,the mine tunneling method and the new Austrian tunneling method have been considered the main theories of tunneling approaches in China.It is difficult for the traditional technique to overcome the large deformation problems imposed by complex geological conditions of mountain soft rock tunneling.Hence,the compensation excavation method has been proposed to solve this issue under the consideration that all damage in tunneling originates from the excavation.It uses supportive strategies to counteract the excavation effects successfully.This paper provides an overview of the fundamental ideas of the compensation excavation method,methodologies,and field applications.The scientific validity and feasibility of the compensation excavation method were investigated through the practical engineering study of the Muzhailing and Changning tunnels. 展开更多
关键词 tunnel engineering Excavation method Soft rock large deformation Compensation excavation method
下载PDF
Influence of underground water seepage flow on surrounding rock deformation of multi-arch tunnel 被引量:11
5
作者 李夕兵 张伟 +1 位作者 李地元 王其胜 《Journal of Central South University of Technology》 EI 2008年第1期69-74,共6页
Based on a typical multi-arch tunnel in a freeway, the fast Lagrangian analysis of continua in 3 dimensions(FLAC3D) was used to calculate the surrounding rock deformation of the tunnel under which the effect of underg... Based on a typical multi-arch tunnel in a freeway, the fast Lagrangian analysis of continua in 3 dimensions(FLAC3D) was used to calculate the surrounding rock deformation of the tunnel under which the effect of underground water seepage flow was taken into account or not. The distribution of displacement field around the multi-arch tunnel, which is influenced by the seepage field, was gained. The result indicates that the settlement values of the vault derived from coupling analysis are bigger when considering the seepage flow effect than that not considering. Through the contrast of arch subsidence quantities calculated by two kinds of computation situations, and the comparison between the calculated and measured value of tunnel vault settlement, it is found that the calculated value(5.7-6.0 mm) derived from considering the seepage effect is more close to the measured value(5.8-6.8 mm). Therefore, it is quite necessary to consider the seepage flow effect of the underground water in aquiferous stratum for multi-arch tunnel design. 展开更多
关键词 multi-arch tunnel underground water seepage flow coupling flow and stress surrounding rock deformation vault settlement
下载PDF
Numerical modeling of large deformation and nonlinear frictional contact of excavation boundary of deep soft rock tunnel 被引量:5
6
作者 Xin Chen Hongyun Guo +2 位作者 Pei Zhao Xi Peng Shizhi Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第S1期421-428,共8页
Roadways excavated in soft rocks at great depth are difficult to be maintained due to large deformation of surrounding rocks, which greatly influences the safety and efficiency of deep resources exploitation. During t... Roadways excavated in soft rocks at great depth are difficult to be maintained due to large deformation of surrounding rocks, which greatly influences the safety and efficiency of deep resources exploitation. During the excavation process of a deep soft rock tunnel, the rock wall may be compacted due to large deformation. In this paper, the technique to address this problem by a two-dimensional (2D) finite element software, large deformation engineering analyses software (LDEAS 1.0), is provided. By using the Lagrange multiplier method, the kinematic constraint of non-penetrating condition and static constraint of Coulomb friction are introduced to the governing equations in the form of incremental displacement. The numerical example demonstrates the efficiency of this technology. Deformations of a transportation tunnel in inclined soft rock strata at the depth of 1 000 m in Qishan coal mine and a tunnel excavated to three different depths are analyzed by two models, i.e. the additive decomposition model and polar decomposition model. It can be found that the deformation of the transportation tunnel is asymmetrical due to the inclination of rock strata. For extremely soft rock, large deformation can converge only for the additive decomposition model. The deformation of surrounding rocks increases with the increase in the tunnel depth for both models. At the same depth, the deformation calculated by the additive decomposition model is smaller than that by the polar decomposition model. 展开更多
关键词 deep soft rock tunnel large deformation contact problem Lagrange multiplier method
下载PDF
Deformation mechanism and collapse treatment of the rock surrounding a shallow tunnel based on on-site monitoring 被引量:4
7
作者 QIU Hong-zhi CHEN Xiao-qing +3 位作者 WU Qi-hong WANG Ren-chao ZHAO Wan-yu QIAN Ke-jiang 《Journal of Mountain Science》 SCIE CSCD 2020年第12期2897-2914,共18页
When tunnels are constructed at shallow depths in areas with poor geological conditions,such as portal sections,valleys and hillsides in regions with granitic bedrock,considerable excavation-induced deformation of the... When tunnels are constructed at shallow depths in areas with poor geological conditions,such as portal sections,valleys and hillsides in regions with granitic bedrock,considerable excavation-induced deformation of the surrounding rock may occur,potentially resulting in tunnel collapses.The main reason for these problems is the lack of understanding of the deformation mechanism and evolution of the soft granitic rock surrounding the tunnel and the adoption of inappropriate construction technology and methods.This article analyzes the deformation mechanism of the rock surrounding a shallow tunnel based on in situ monitoring data as a case study and suggests that certain measures should be taken to effectively control the deformation of the surrounding rock and to minimize the potential for tunnel collapse.The results show that the deformation of the granitic soil surrounding the tunnel can be divided into three stages:the rapid deformation stage,the slow deformation stage and the stabilization stage.Appropriate construction methods should be carefully selected to ensure safety during tunnel excavation in the first stage.To avoid secondary disasters caused by tunnel collapses,three treatment measures may be implemented as part of safety management:enhancing the monitoring of the surrounding rock deformation,adjusting the construction methods and optimizing the support systems.In particular,accurate monitoring data and timely information feedback play a vital role in tunnel construction.Therefore,engineers with considerable engineering experience and professional knowledge are needed to analyze the monitoring data and make accurate predictions of tunnel deformation to ensure that reasonable measures are taken in the process of shallow tunnel excavation. 展开更多
关键词 Shallow tunnel surrounding rock deformation Field monitoring Treatment for collapse Information feedback
下载PDF
Numerical simulation on deformation character of surrounding rock masses of Changjiashan tunnel through the gob of coalmine 被引量:5
8
作者 张志沛 《Journal of Coal Science & Engineering(China)》 2006年第2期11-15,共5页
Based on the construction project of the Changjiashan tunnel of the freeway,the variety rule of surrounding rock masses of the tunnel through the gob of coalmine wasstudied by using of finite element methed(FEM).The s... Based on the construction project of the Changjiashan tunnel of the freeway,the variety rule of surrounding rock masses of the tunnel through the gob of coalmine wasstudied by using of finite element methed(FEM).The status of the stress and strain,thevariety of the plastic area were simulated in the whole rock mass before and after thetunnel was excavated.The characters of stress and deformation of surrounding rockmasses were analyzed when the tunnel was built.It concluded from the numerical simula-tion that the influence on the tunneling is great when the tunnel passing through the gob ofcoalmine is excavated,and the relative measures should be taken. 展开更多
关键词 Changjiashan tunnel gob deformation of surrounding rock masses analysis of FEM
下载PDF
Non-contact monitoring and analysis system for tunnel surrounding rock deformation of underground engineering 被引量:1
9
作者 YANG Song-lin, WANG Bin, JI Sheng-yue, LIU Wei-ning, SHI Hong-yun (Beijing Jiaotong University, Beijing 100044, China) 《中国有色金属学会会刊:英文版》 CSCD 2005年第S1期96-99,共4页
It is very important to monitor surrounding rock deformation in tunnel construction. The principle, function, development and application of the system composed of a total station and computer for monitoring and analy... It is very important to monitor surrounding rock deformation in tunnel construction. The principle, function, development and application of the system composed of a total station and computer for monitoring and analyzing surrounding rock deformation were discussed. The new methods of two free station of 3D measurement and its mathematic adjustment mode were presented. The development of software for total station on-board and post for computer were also described. Without centering it and measuring its height, the total station controlled by the software on-board can fulfill the whole measurements to target points. Monitoring data can be processed by the post software and results of regression analysis, forecasting information of the tunnel surrounding rock deformation can be provided in time. The practical use shows that this system is practicable, highly accurate and efficient. It satisfies the needs of safety and information construction in tunnel construction of underground engineering. 展开更多
关键词 tunnel construction deformation of surrounding ROCK TOTAL STATION NON-CONTACT monitoring data processing and analysis
下载PDF
Time-dependent squeezing deformation mechanism of tunnels in layered soft-rock stratum under high geo-stress 被引量:5
10
作者 CHEN Zi-quan HE Chuan +1 位作者 WANG Jun MA Chun-chi 《Journal of Mountain Science》 SCIE CSCD 2021年第5期1371-1390,共20页
Large squeezing deformation of layered soft rock tunnel under high geo-stress has a significant time-dependent deformation behavior.In this paper,we studied the deformation mechanism during the construction period of ... Large squeezing deformation of layered soft rock tunnel under high geo-stress has a significant time-dependent deformation behavior.In this paper,we studied the deformation mechanism during the construction period of deep-buried softrock tunnel by means of a combination of field observations and a numerical method.First,a new classification criterion for large deformations based on the power exponent variation law between the deformation and the strength-stress ratio is proposed.Then,the initial damage tensor reflecting the bedding plane(joint)distribution and an equivalent damage evolution equation derived from the viscoplastic strain are introduced based on the geometric research method,i.e.,a new rheological damage model(RDL model)of layered soft rock is established consisting of elastic,viscous,viscoelastic,viscoplastic and plastic elements.A field test was conducted on the Maoxian tunnel in Sichuan province,southwestern China,which is in broken phyllite(layered soft rock)under high geo-stress.The tunnel has experienced large deformation due to serious squeezing pressure,thus we adopted double primary support method to overcome the supporting structure failure problems.The rheological parameters of phyllite in the Maoxian tunnel were recognized by using SA-PSO optimization,and the RDL model does a good job in describing the time-dependent deformation behavior of a layered soft-rock tunnel under high geo-stress.Thus,the RDL model was used to investigate the supporting effect and bearing mechanism of the double primary support method.Compared with the single primary support method,the surrounding rock pressure,secondary lining force,surrounding rock deformation,and the depth of the damage to the rock mass was reduced by 40%-60%after the double primary support method was used. 展开更多
关键词 deformation mechanism Layered soft rock tunnel High geostress large squeezing deformation Rheological damage model
下载PDF
Analysis of mechanical behavior of soft rocks and stability control in deep tunnels 被引量:5
11
作者 Hui Zhou Chuanqing Zhang +2 位作者 Zhen Li Dawei Hu Jing Hou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第3期219-226,共8页
Due to the weakness in mechanical properties of chlorite schist and the high in situ stress in Jinping II hydropower station, the rock mass surrounding the diversion tunnels located in chlorite schist was observed wit... Due to the weakness in mechanical properties of chlorite schist and the high in situ stress in Jinping II hydropower station, the rock mass surrounding the diversion tunnels located in chlorite schist was observed with extremely large deformations. This may significantly increase the risk of tunnel instability during excavation. In order to assess the stability of the diversion tunnels laboratory tests were carried out in association with the petrophysical properties, mechanical behaviors and waterlweakening properties of chlorite schist. The continuous deformation of surrounding rock mass, the destruction of the support structure and a large-scale collapse induced by the weak chlorite schist and high in situ stress were analyzed. The distributions of compressive deformation in the excavation zone with large deformations were also studied. In this regard, two reinforcement schemes for the excavation of diversion tunnel bottom section were proposed accordingly. This study could offer theoretical basis for deed tunnel construction in similar geological condition~ 展开更多
关键词 Deep tunnel Soft rock Water-weakening effect large deformation Stability
下载PDF
Tunnel Surrounding Rock Deformation Characteristics and Control in Deep Coal Mining 被引量:2
12
作者 Zhiqiang Zhao Housheng Jia +1 位作者 Bo Peng Yangyang Dong 《Geomaterials》 2013年第1期24-27,共4页
In order to study the failure characteristics and control method of deep tunnel surrounding rock, based on the stress test, the structure and stress state of the main transportation tunnel surrounding rock in Mine Zha... In order to study the failure characteristics and control method of deep tunnel surrounding rock, based on the stress test, the structure and stress state of the main transportation tunnel surrounding rock in Mine Zhaogezhuang level 14 was analyzed, and it shows that the surrounding rock is exposed to an interphase hard and soft disadvantageous structure state and complex high stress repeated addition area;Through the theoretical analysis and the statistical data, the relation between the tunnel stress transformation and the surrounding rock deformation was proposed;Through the numerical simulation of the tunnel surrounding rock failure process with the help of RFPA procedure, the results show that the damage of the transportation tunnel level 14 mainly occurs in the bottom and the two coal ribs, and the failure process is spreading from the bottom to the two coal ribs, and the effect of the surrounding rock deformation control is obvious by using the way of 2.5 m anchor with 1.0 m grouting strengthening. 展开更多
关键词 DEEP tunnel surrounding ROCK Control Stress TRANSFORMATION deformation Characteristics
下载PDF
Excavation influence of triangular-distribution tunnels for wind pavilion group of a metro station 被引量:2
13
作者 CHEN Tao ZHOU Kun +4 位作者 WEI Jun LIU Xiao-chun LIN Yu-liang ZHANG Jian SHEN Quan 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3852-3874,共23页
For the Guanshui Road Station tunnel project of Guiyang Metro Line 2,the wind pavilion group was moved out of the main tunnel to reduce the number of openings in the main tunnel,and the wind pavilion group was excavat... For the Guanshui Road Station tunnel project of Guiyang Metro Line 2,the wind pavilion group was moved out of the main tunnel to reduce the number of openings in the main tunnel,and the wind pavilion group was excavated in a triangular configuration at the entrance of the main tunnel.Based on the finite element software ABAQUS,a three-dimensional model is established to study the influence of different triangular-distribution tunnels excavation schemes on the surface settlement and tunnel stability.The objective of this study is to reveal the change rules of surface settlement,deformation and force in the support structures and the surrounding rock and identify the best excavation scheme for this tunnel configuration.Results show that to control the surface settlement and the deformation of the support structures,the optimal excavation sequence involves excavating the upper fresh air exhaust tunnel before the lower running tunnel.To control the stress of the support structures,the optimal excavation involves excavating the lower running tunnel before the upper fresh air exhaust tunnel.In this project,the most reasonable excavation sequence of the tunnel is from top to bottom.The most reasonable thickness of tunnel penetration is 5 m. 展开更多
关键词 station tunnel wind pavilion group finite element analysis tunnel and surrounding rock deformation stress analysis
下载PDF
基于Bayes-LSTM的公路隧道围岩变形预测方法研究 被引量:2
14
作者 刘智 李欣雨 +2 位作者 李震 孔宪光 常建涛 《中外公路》 2024年第1期166-176,共11页
在公路隧道施工过程中,围岩的稳定性对隧道施工的影响较大。因此公路隧道围岩变形的监控量测与准确预测是保障隧道施工安全的关键。针对当前隧道围岩变形的预测精度较低以及泛化能力较差等问题,该文提出一种基于贝叶斯(Bayes)优化长短... 在公路隧道施工过程中,围岩的稳定性对隧道施工的影响较大。因此公路隧道围岩变形的监控量测与准确预测是保障隧道施工安全的关键。针对当前隧道围岩变形的预测精度较低以及泛化能力较差等问题,该文提出一种基于贝叶斯(Bayes)优化长短期记忆网络(LSTM)的方法,该方法首先对拱顶沉降和周边收敛的原始监测数据进行预处理,而后构建公路隧道拱顶沉降与周边收敛的初始LSTM模型,并利用Bayes优化模型中的超参数,最终得出预测结果。利用该模型对某公路隧道拱顶沉降和周边收敛进行预测,将预测结果以均方根误差为评价指标与神经网络(CNN)和支持向量回归(SVR)进行对比。预测拱顶沉降时,Bayes-LSTM模型的平均预测精度相较于CNN与SVR模型分别提高了1.0与1.26;预测周边收敛时,Bayes-LSTM模型平均精度相较于CNN与SVR分别提高了0.3与0.32。表明Bayes-LSTM模型的预测精度较高,同时其能在训练模型过程中对历史信息进行判断和取舍,极大地提高了时序数据处理的效率,为公路隧道围岩变形预测提供了新的思路和探索。 展开更多
关键词 公路隧道 围岩变形 数据分析 LSTM 贝叶斯优化
下载PDF
极高地应力软岩隧道非对称变形机理及支护优化研究 被引量:2
15
作者 陈志敏 赵吉万 +3 位作者 龚军 陈宇飞 李增印 孙胜旗 《防灾减灾工程学报》 CSCD 北大核心 2024年第1期109-119,共11页
针对极大断面公路隧道施工中出现的非对称大变形问题,考虑高地应力第一主应力与隧道轴线关系、层状软岩夹层与互层状态、掌子面软岩空间不对称、地下水等因素,基于对工程地质条件、围岩与支护结构失效及破坏特征的分析,结合岩样物理力... 针对极大断面公路隧道施工中出现的非对称大变形问题,考虑高地应力第一主应力与隧道轴线关系、层状软岩夹层与互层状态、掌子面软岩空间不对称、地下水等因素,基于对工程地质条件、围岩与支护结构失效及破坏特征的分析,结合岩样物理力学特性室内试验研究及地应力实测情况,探究了非对称大变形形成机理并提出针对性的支护结果优化方案。结果表明:高地应力层状软岩隧道围岩不对称变形是在岩层倾角α、最大水平主应力与隧道轴线夹角β和岩层夹角γ、围岩岩性和地下水综合作用下的大变形,围岩不对称部位由以上几种因素共同决定;当主应力σ1与隧道轴线既不垂直也不平行时,会产生挤压性偏压构造水平地应力,使隧道横断面侧向受力不对称,发生偏压性非对称大变形;通过改变锚杆的布设方式、提高超前注浆小导管的长度和刚度、喷射临时封闭、在防水板与喷射砼间增加高密度橡塑海绵板缓冲层等措施,可以有效的减少变形量,防止围岩因开挖扰动而松动和坍塌。 展开更多
关键词 极高地应力 软岩隧道 非对称变形 支护优化
下载PDF
施工期铁路隧道软岩大变形快速分级方法研究
16
作者 张广泽 贾哲强 +3 位作者 罗良成 王栋 任利 袁传保 《铁道工程学报》 EI CSCD 北大核心 2024年第2期20-25,共6页
研究目的:西南复杂艰险山区等典型构造活跃区的构造地质环境复杂,断裂、褶皱发育,构造应力显著,铁路隧道围岩大变形问题突出,随着构造活跃区铁路隧道工程日益增加,将面临更严峻的大变形问题。在隧道施工开挖过程中,快速判别可能发生的... 研究目的:西南复杂艰险山区等典型构造活跃区的构造地质环境复杂,断裂、褶皱发育,构造应力显著,铁路隧道围岩大变形问题突出,随着构造活跃区铁路隧道工程日益增加,将面临更严峻的大变形问题。在隧道施工开挖过程中,快速判别可能发生的大变形等级,有利于施工工法的调整和支护措施的制定。研究结论:(1)深入分析构造软岩大变形工程案例,以施工期掌子面开挖揭示围岩分级数据为基准,结合区域地应力、岩层厚度、岩性等大变形关键控制因素,快速判定大变形等级,提出了施工期铁路隧道围岩大变形快速分级方法,并结合典型工程案例对分级方法的有效性和准确性进行了验证;(2)本研究成果可应用于施工期间铁路隧道开挖围岩大变形的快速分级,适用于工程地质勘察领域。 展开更多
关键词 构造活跃区 铁路隧道 软岩大变形 快速分级
下载PDF
考虑湿度应力的深部软岩隧道大变形控制研究
17
作者 张建俊 王洋 +2 位作者 孙闯 裴文强 张馨 《地下空间与工程学报》 CSCD 北大核心 2024年第1期230-240,共11页
为探明深部高地应力软岩隧道大变形产生机理,制定适应大变形控制措施,以月直山隧道为工程依托,首先明确求解围岩形变压力与松动压力的Kastner与Caquot公式,基于岩体弹塑性力学与连续介质理论建立围岩湿度应力解析解,采用收敛-约束法绘制... 为探明深部高地应力软岩隧道大变形产生机理,制定适应大变形控制措施,以月直山隧道为工程依托,首先明确求解围岩形变压力与松动压力的Kastner与Caquot公式,基于岩体弹塑性力学与连续介质理论建立围岩湿度应力解析解,采用收敛-约束法绘制出3种围岩应力作用下围岩与初期支护特征曲线,分析断面变形过程中围岩与支护结构相互作用规律及3种应力占比演化规律。分别以混凝土与型钢钢架作为二衬支护结构对月直山隧道围岩稳定性进行计算分析,明确考虑湿度应力与松动压力条件下隧道二衬最优支护时机与支护参数,以支护结构安全系数FS评判出最优支护方案并对隧道软岩大变形进行治理。结果表明:当围岩径向位移达到550 mm时,仅考虑形变压力Pi时围岩对支护结构的压力P仅为0.813 MPa,考虑湿度应力Pw与松动压力Pa时P增大为1.372 MPa,湿度应力与松动应力总占比达40.7%,仅考虑形变压力而设计的支护结构不满足围岩稳定性要求;根据“卸压支护”理念,确定以“位移释放峰值upeak=0.325 m”与“间距d=0.7 m”作为增设第二层钢架的最佳支护时机与支护参数,现场二次钢架设置24天后使围岩变形收敛于50.8 mm,围岩大变形得到控制,研究成果可为今后相关隧道工程设计与施工提供参考。 展开更多
关键词 隧道工程 软岩大变形 湿度应力 收敛-约束法 支护优化
下载PDF
穿断层破碎带隧道围岩大变形控制双梯度注浆机制
18
作者 陶志刚 孙吉浩 +3 位作者 曹振生 胡才 郭隆基 何满潮 《隧道建设(中英文)》 CSCD 北大核心 2024年第6期1194-1213,I0023-I0042,共40页
近些年,中国西部大量深埋隧道工程因关键线路控制无法避让一些活动性断裂,常常在跨越断裂带范围内出现围岩大变形破坏现象,例如侵限、偏压、塌方、底鼓等灾害,严重影响隧道工程施工和运营的安全可持续发展。为了控制断层破碎带隧道围岩... 近些年,中国西部大量深埋隧道工程因关键线路控制无法避让一些活动性断裂,常常在跨越断裂带范围内出现围岩大变形破坏现象,例如侵限、偏压、塌方、底鼓等灾害,严重影响隧道工程施工和运营的安全可持续发展。为了控制断层破碎带隧道围岩大变形,隧道工程设计者和建设者采用了多种控制方案,例如超前注浆、多层钢拱架被动支护、锚杆索主动支护等,但是都因断层破碎带围岩强度过低而出现超前注浆诱发围岩拉裂破碎、主动支护锚杆锚固力不足等现象。为解决上述难题,首先,提出一种增强穿断层破碎带隧道围岩强度的双梯度注浆技术,建立双梯度注浆概念模型,构建3种双梯度注浆模式;然后,确定特定工况下注浆材料粒径梯度与注浆压力梯度的适配条件;最后,通过理论分析、物理模型试验和现场试验,探索双梯度注浆机制及其控制效果。研究结果表明:1)随着开挖步序的增加,穿断层破碎带隧道拱肩变形最大,构造应力对围岩稳定性影响较大。2)在双梯度注浆作用下,浆液扩散效果良好,围岩未出现大面积脱落破坏,隧道周围岩体应力分布均匀。3)双梯度注浆形成了坚硬交叉浆脉骨架,达到了应力补偿效果,将围岩变形量从原来的3 100 mm控制到278 mm以内,实现了“零换拱、零侵限、零突涌”的目标。 展开更多
关键词 隧道 断层破碎带 围岩大变形 双梯度注浆 开挖补偿法
下载PDF
黄土盾构隧道开挖围岩扰动特性模型试验研究
19
作者 韩兴博 陈子明 +3 位作者 叶飞 梁晓明 冯浩岚 夏天晗 《岩土工程学报》 EI CAS CSCD 北大核心 2024年第5期968-977,共10页
为了探究不同含水率和埋深等工况下的黄土盾构隧道开挖对围岩的扰动作用特征,采用相似模型试验,首先通过三轴试验测定了不同含水率下原状黄土物理参数及强度指标,通过大量试配得到了不同含水率下与原状黄土强度指标参数相似的试验用土... 为了探究不同含水率和埋深等工况下的黄土盾构隧道开挖对围岩的扰动作用特征,采用相似模型试验,首先通过三轴试验测定了不同含水率下原状黄土物理参数及强度指标,通过大量试配得到了不同含水率下与原状黄土强度指标参数相似的试验用土。其后,考虑盾构隧道盾尾间隙特征,开展不同含水率及埋深等组合工况下盾构开挖模拟试验,通过微型土压力传感器、百分表等监测元件以及数字图像技术等手段,分析了不同工况下地层变形、地表沉降和围岩应力的变化规律。研究发现:含水率较低时,围岩的自稳能力强;含水率越高,埋深越大,开挖对地层的扰动作用也越大;地表最大沉降值与含水率呈正相关,与埋深呈负相关;围岩剩余应力随含水率和埋深的增大而增大,但当含水率增大至一定值(26.6%)时,围岩剩余应力骤减;基于不同含水率下的围岩应力及变形发展规律,可将黄土含水率分为自稳、形变以及松动含水率,基于含水率和埋深引起的围岩松动情况,可将不同工况下的黄土盾构隧道围岩压力作用模式按照形变压力和松动压力计算,以更加适应黄土地层的特性。 展开更多
关键词 黄土盾构隧道 相似模型试验 含水率 埋深 围岩变形 应力
下载PDF
NPR锚索对跨断层软岩大变形隧道控制技术研究
20
作者 陶志刚 林伟军 +3 位作者 李勇 孙滢滢 熊弋文 陈明亮 《隧道建设(中英文)》 CSCD 北大核心 2024年第S01期113-123,共11页
为探究NPR锚索对东马场跨断层软岩大变形隧道控制效果,首先对NPR锚索进行静力拉伸试验,验证其恒阻大变形的能力和具有良好的抵御外力的效果;随后开展NPR锚索对东马场隧道围岩变形控制的三维物理模型试验。试验现象和数据表明:在开挖过程... 为探究NPR锚索对东马场跨断层软岩大变形隧道控制效果,首先对NPR锚索进行静力拉伸试验,验证其恒阻大变形的能力和具有良好的抵御外力的效果;随后开展NPR锚索对东马场隧道围岩变形控制的三维物理模型试验。试验现象和数据表明:在开挖过程中,隧道围岩也没有出现较大垮落和坍塌,NPR锚索对软岩隧道围岩有较好的支护效果。在加载完成后,NPR锚索对非断层处的隧道围岩最大位移约为14 mm,断层处的围岩最大位移约为21 mm,隧道区域所受应力分布的不规律性,导致隧道围岩出现挤压变形,位移曲线呈振荡状。在NPR锚索的支护下,围岩应力最大发生在左拱肩,围岩临空面3 cm处切应力最大(0.3 MPa),隧道未出现大规模的不对称破坏现象,隧道总体呈现出“小塌而不垮”,变形总体可控。 展开更多
关键词 断层隧道 软岩大变形 NPR锚索 物理模型试验
下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部